simple-pv-simulator/main.py
2024-05-07 10:27:45 +02:00

505 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#!/usr/bin/env python
# coding: utf-8
# In[40]:
import pandas as pd
class pv_config:
def __init__(self, capacity, cost_per_kW, lifetime, loss):
self.capacity = capacity
self.cost_per_kW = cost_per_kW
self.lifetime = lifetime
self.loss = loss
def get_cost(self):
return self.capacity * self.cost_per_kW
def get_cost_per_year(self):
return self.capacity * self.cost_per_kW / self.lifetime
class ess_config:
def __init__(self, capacity, cost_per_kW, lifetime, loss, charge_power, discharge_power):
self.capacity = capacity
self.cost_per_kW = cost_per_kW
self.lifetime = lifetime
self.loss = loss
self.storage = 100
self.charge_power = charge_power
self.discharge_power = discharge_power
def get_cost(self):
return self.capacity * self.cost_per_kW
def get_cost_per_year(self):
return self.capacity * self.cost_per_kW / self.lifetime
class grid_config:
def __init__(self, capacity, grid_loss, sell_price):
# self.price_schedule = price_schedule
self.loss = grid_loss
self.sell_price = sell_price
self.capacity = capacity
def get_price_for_time(self, time):
hour, minute = map(int, time.split(':'))
total_minutes = hour * 60 + minute
for _, row in self.price_schedule.iterrows():
start_hour, start_minute = map(int, row['time_start'].split(':'))
end_hour, end_minute = map(int, row['time_end'].split(':'))
start_total_minutes = start_hour * 60 + start_minute
end_total_minutes = end_hour * 60 + end_minute
if start_total_minutes <= total_minutes < end_total_minutes:
return row['price']
return 0.1 # 默认电价,以防万一没有匹配的时间段
# In[41]:
class EnergySystem:
def __init__(self, pv_type: pv_config, ess_type: ess_config, grid_type: grid_config):
self.pv = pv_type
self.ess = ess_type
self.grid = grid_type
self.day_generated = []
self.generated = 0
self.stored = 0
self.hour_stored = []
self.hour_stored_2 = []
self.afford = True
self.cost = self.ess.get_cost() + self.pv.get_cost()
self.overload_cnt = 0
self.spring_week_gen = []
self.summer_week_gen = []
self.autumn_week_gen = []
self.winter_week_gen = []
self.spring_week_soc = []
self.summer_week_soc = []
self.autumn_week_soc = []
self.winter_week_soc = []
self.granularity = 4
self.season_step = self.granularity * 24 * 7 * 12
self.season_start= self.granularity * 24 * 7 * 2
self.week_length = self.granularity * 24 * 7
self.unmet = []
def get_cost(self):
return self.ess.get_cost()+self.pv.get_cost()
# 优先使用PV供电给工厂 - 如果PV输出能满足工厂的需求则直接供电多余的电能用来给ESS充电。
# PV不足时使用ESS补充 - 如果PV输出不足以满足工厂需求首先从ESS获取所需电量。
# 如果ESS也不足以满足需求再从电网获取 - 当ESS中的存储电量也不足以补充时再从电网购买剩余所需电量。
def simulate(self, data, time_interval):
total_benefit = 0
for index, row in data.iterrows():
time = row['time']
sunlight_intensity = row['sunlight']
factory_demand = row['demand']
electricity_price = row['price']
# electricity_price = self.grid.get_price_for_time(time)
if time == '00:00':
self.day_generated.append(self.generated)
self.generated = 0
if time.endswith('14:00'):
soc = self.ess.storage / self.ess.capacity
self.hour_stored.append(soc)
if time.endswith('08:00'):
soc = self.ess.storage / self.ess.capacity
self.hour_stored_2.append(soc)
generated_pv_power = self.pv.capacity * sunlight_intensity # 生成的功率,单位 kW
generated_pv_energy = generated_pv_power * time_interval * self.pv.loss # 生成的能量,单位 kWh
self.generated += generated_pv_energy
# pv生成的能量如果比工厂的需求要大
if generated_pv_energy >= factory_demand * time_interval:
# 剩余的能量(kwh) = pv生成的能量 - 工厂需求的功率 * 时间间隔
surplus_energy = generated_pv_energy - factory_demand * time_interval
# 要充到ess中的能量 = min(剩余的能量,ess的充电功率*时间间隔(ess在时间间隔内能充进的电量),ess的容量-ess储存的能量(ess中能冲进去的电量))
charge_to_ess = min(surplus_energy, self.ess.charge_power * time_interval, self.ess.capacity - self.ess.storage)
self.ess.storage += charge_to_ess
surplus_after_ess = surplus_energy - charge_to_ess
# 如果还有电量盈余,且pv功率大于ess的充电功率+工厂的需求功率则准备卖电
if surplus_after_ess > 0 and generated_pv_power > self.ess.charge_power + factory_demand:
sold_to_grid = surplus_after_ess
sell_income = sold_to_grid * self.grid.sell_price
total_benefit += sell_income
# 节省的能量 = 工厂需求的能量 * 时间段
# total_energy = factory_demand * time_interval
saved_energy = factory_demand * time_interval
# pv比工厂的需求小
else:
# 从ess中需要的电量 = 工厂需要的电量 - pv中的电量
needed_from_ess = factory_demand * time_interval - generated_pv_energy
# 如果ess中存的电量比需要的多
if self.ess.storage * self.ess.loss >= needed_from_ess:
# 取出电量
if self.ess.discharge_power * time_interval * self.ess.loss < needed_from_ess:
discharging_power = self.ess.discharge_power * time_interval
else:
discharging_power = needed_from_ess / self.ess.loss
self.ess.storage -= discharging_power
# 节省下来的能量 = pv的能量 + 放出来的能量
saved_energy = generated_pv_energy + discharging_power * self.ess.loss
else:
# 如果存的电量不够
# 需要把ess中的所有电量释放出来
if self.grid.capacity * time_interval + generated_pv_energy + self.ess.storage * self.ess.loss < factory_demand * time_interval:
self.afford = False
self.overload_cnt+=1
log = f"index: {index}, time: {time}, SoC:{self.ess.storage / self.ess.capacity}%, storage: {self.ess.storage}, pv_gen:{generated_pv_power}, power_demand: {factory_demand}, overload_cnt:{self.overload_cnt}, day:{int(index/96) + 1}"
self.unmet.append((index,time,factory_demand,generated_pv_power))
# with open(f'plots/summary/ess-{self.ess.capacity}-pv-{self.pv.capacity}', 'a') as f:
# f.write(log)
print(log)
# self.unmet.append(log)
saved_energy = generated_pv_energy + self.ess.storage * self.ess.loss
self.ess.storage = 0
needed_from_grid = factory_demand * time_interval - saved_energy
net_grid = min(self.grid.capacity * time_interval, needed_from_grid) * self.grid.loss
# grid_energy += net_grid
# total_energy += net_grid
# print(total_energy)
# 工厂需求量-总能量
# unmet_demand = max(0, factory_demand * time_interval - total_energy)
# benefit = (total_energy - unmet_demand) * electricity_price
benefit = (saved_energy) * electricity_price
cost = net_grid * electricity_price
# print(f"time:{time} benefit: {benefit}, cost: {cost}")
total_benefit += benefit - cost
# # spring
week_start = self.season_start
week_end = self.week_length + week_start
if index in range(week_start, week_end):
self.spring_week_gen.append(generated_pv_power)
self.spring_week_soc.append(self.ess.storage / self.ess.capacity)
# summer
# week_start += self.season_step
# week_end += self.season_step
# if index in range(week_start, week_end):
# self.summer_week_gen.append(generated_pv_power)
# self.summer_week_soc.append(self.ess.storage / self.ess.capacity)
# # autumn
# week_start += self.season_step
# week_end += self.season_step
# if index in range(week_start, week_end):
# self.autumn_week_gen.append(generated_pv_power)
# self.autumn_week_soc.append(self.ess.storage / self.ess.capacity)
# week_start += self.season_step
# week_end += self.season_step
# if index in range(week_start, week_end):
# self.winter_week_gen.append(generated_pv_power)
# self.winter_week_soc.append(self.ess.storage / self.ess.capacity)
return total_benefit
import os
import glob
import shutil
def clear_folder_make_ess_pv(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path)
os.makedirs(os.path.join(folder_path,'ess'))
os.makedirs(os.path.join(folder_path,'pv'))
folder_path = 'plots'
clear_folder_make_ess_pv(folder_path)
# In[42]:
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from config import pv_config, grid_config, ess_config
figure_size = (10,8)
# In[43]:
import json
with open('config.json', 'r') as f:
js_data = json.load(f)
data = pd.read_csv('combined_data.csv')
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
pv_loss = js_data["pv"]["loss"]
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
pv_lifetime = js_data["pv"]["lifetime"]
ess_loss = js_data["ess"]["loss"]
ess_cost_per_kW = js_data["ess"]["cost_per_kW"]
ess_lifetime = js_data["ess"]["lifetime"]
grid_loss = js_data["grid"]["loss"]
sell_price = js_data["grid"]["sell_price"] #kWh
grid_capacity = js_data["grid"]["capacity"] #kWh
pv_begin = js_data["pv_capacities"]["begin"]
pv_end = js_data["pv_capacities"]["end"]
pv_groups = js_data["pv_capacities"]["groups"]
ess_begin = js_data["ess_capacities"]["begin"]
ess_end = js_data["ess_capacities"]["end"]
ess_groups = js_data["ess_capacities"]["groups"]
pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)
ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# In[44]:
hour_demand = []
for index, row in data.iterrows():
time = row['time']
demand = row['demand']
if time.endswith('00'):
hour_demand.append(demand)
plt.figure(figsize=(10,8))
plt.plot(hour_demand)
plt.ylabel('Demand Power / kW')
plt.savefig('plots/demand.png')
plt.close()
# In[45]:
def cal_profit(es: EnergySystem, saved_money):
profit = saved_money - es.ess.get_cost_per_year() - es.pv.get_cost_per_year()
return profit
# In[46]:
for pv_capacity in pv_capacities:
print(f"pv_capacity:{pv_capacity}")
for ess_capacity in ess_capacities:
print(f"ess_capacity:{ess_capacity}")
pv = pv_config(capacity=pv_capacity,
cost_per_kW=pv_cost_per_kW,
lifetime=pv_lifetime,
loss=pv_loss)
ess = ess_config(capacity=ess_capacity,
cost_per_kW=ess_cost_per_kW,
lifetime=ess_lifetime,
loss=ess_loss,
charge_power=ess_capacity,
discharge_power=ess_capacity)
grid = grid_config(capacity=grid_capacity,
grid_loss=grid_loss,
sell_price= sell_price)
energySystem = EnergySystem(pv_type=pv,
ess_type=ess,
grid_type= grid)
benefit = energySystem.simulate(data, time_interval)
results.loc[pv_capacity,ess_capacity] = cal_profit(energySystem, benefit)
affords.loc[pv_capacity,ess_capacity] = energySystem.afford
overload_cnt.loc[pv_capacity,ess_capacity] = energySystem.overload_cnt
costs.loc[pv_capacity,ess_capacity] = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
pv_generated = energySystem.day_generated
ess_generated = energySystem.hour_stored
ess_generated_2 = energySystem.hour_stored_2
plt.figure(figsize=(10,8));
plt.plot(ess_generated)
plt.xlabel('day #')
plt.ylabel('SoC %')
plt.title(f'14:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
plt.savefig(f'plots/ess/1400-{pv_capacity}-{ess_capacity}.png')
plt.close()
plt.figure(figsize=(10,8));
plt.plot(ess_generated_2)
plt.xlabel('day #')
plt.ylabel('SoC%')
plt.title(f'08:00 ESS SoC \n PV cap:{pv_capacity}, ESS cap:{ess_capacity}')
plt.savefig(f'plots/ess/0800-{pv_capacity}-{ess_capacity}.png')
plt.close()
print(energySystem.unmet)
spring_week_start = energySystem.season_start
spring_week_end = spring_week_start + energySystem.week_length
# summer_week_start = energySystem.season_start + 1 * energySystem.season_step
# summer_week_end = summer_week_start + energySystem.week_length
# autumn_week_start = energySystem.season_start + 2 * energySystem.season_step
# autumn_week_end = autumn_week_start + energySystem.week_length
# winter_week_start = energySystem.season_start + 3 * energySystem.season_step
# winter_week_end = winter_week_start+ energySystem.week_length
spring_consume_data = []
# summer_consume_data = []
# autumn_consume_data = []
# winter_consume_data = []
for index, row in data.iterrows():
if index in range(spring_week_start, spring_week_end):
spring_consume_data.append(row['demand'])
# elif index in range(summer_week_start, summer_week_end):
# summer_consume_data.append(row['demand'])
# elif index in range(autumn_week_start, autumn_week_end):
# autumn_consume_data.append(row['demand'])
# elif index in range(winter_week_start, winter_week_end):
# winter_consume_data.append(row['demand'])
spring_week_time = list(range(spring_week_start, spring_week_end))
# summer_week_time = list(range(summer_week_start, summer_week_end))
# autumn_week_time = list(range(autumn_week_start, autumn_week_end))
# winter_week_time = list(range(winter_week_start, winter_week_end))
spring_pv_generated = energySystem.spring_week_gen
# summer_pv_generated = energySystem.summer_week_gen
# autumn_pv_generated = energySystem.autumn_week_gen
# winter_pv_generated = energySystem.winter_week_gen
# spring_soc = energySystem.spring_week_soc
# summer_soc = energySystem.summer_week_soc
# autumn_soc = energySystem.autumn_week_soc
# winter_soc = energySystem.winter_week_soc
# fig, ax1 = plt.subplots()
plt.plot(spring_week_time, spring_pv_generated, label = 'pv generation')
plt.plot(spring_week_time, spring_consume_data, label = 'factory consume')
plt.ylabel('Power / kW')
plt.xlabel('15 min #')
plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW spring week generate condition')
plt.legend()
plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-spring.png')
plt.close()
# plt.plot(summer_week_time, summer_pv_generated, label = 'pv generation')
# plt.plot(summer_week_time, summer_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW summer week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-summer.png')
# plt.close()
# plt.plot(autumn_week_time, autumn_pv_generated, label = 'pv generation')
# plt.plot(autumn_week_time, autumn_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW autumn week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-autumn.png')
# plt.close()
# plt.plot(winter_week_time, winter_pv_generated, label = 'pv generation')
# plt.plot(winter_week_time, winter_consume_data, label = 'factory consume')
# plt.ylabel('Power / kW')
# plt.xlabel('15 min #')
# plt.title(f'ess: {energySystem.ess.capacity/1000 } MWh pv: {energySystem.pv.capacity/1000 } MW winter week generate condition')
# plt.legend()
# plt.savefig(f'plots/{energySystem.ess.capacity}-{energySystem.pv.capacity}-winter.png')
# plt.close()
plt.figure();
plt.plot(pv_generated)
plt.xlabel('day #')
plt.ylabel('Electricity kWh')
plt.title(f'PV generated pv cap:{pv_capacity}, ess cap:{ess_capacity}')
plt.savefig(f'plots/pv/{pv_capacity}-{ess_capacity}.png')
plt.close()
# plt.show()
# results = results.astype(float)
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
# print(benefit)
# In[47]:
energySystem.unmet
# In[48]:
df=results
df = df.astype(float)
df.index = df.index / 1000
df.columns = df.columns / 1000
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
plt.figure(figsize=figure_size)
cmap = sns.color_palette("coolwarm", as_cmap=True)
sns.heatmap(df/1000, annot=True, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale)
plt.title('Benefit Heatmap Based on PV and ESS Capacities (kEUR/year)')
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig('plots/benefit.png')
# In[49]:
df = costs
df = df.astype(int)
df.index = df.index / 1000
df.columns = df.columns / 1000
plt.figure(figsize=figure_size)
sns.heatmap(df/1000000, annot=True, fmt=".1f", cmap='viridis')
plt.title('Costs of the PV System/million Eur')
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig('plots/costs.png')
# pv = pv_config(capacity=100000,cost_per_kW=200,lifetime=25,loss=0.95)
# ess = ess_config(capacity=100000,cost_per_kW=300,lifetime=25,loss=0.95,charge_power=100000,discharge_power=100000)
# grid = grid_config(price_schedule=price_schedule, capacity=5000, grid_loss=0.95, sell_price=0.4)
# grid = grid_config(capacity=50000, grid_loss=0.95, sell_price=0.4)
# print(benefit)
# In[ ]:
# In[50]:
from matplotlib.colors import LinearSegmentedColormap
df = overload_cnt
df = df.astype(int)
df.index = df.index / 1000
df.columns = df.columns / 1000
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
sns.heatmap(df/(4*24*365), annot=True, fmt=".1f", cmap=cmap, vmin=0, vmax=1)
plt.title('Probability of unmet electricity demands')
plt.gca().invert_yaxis()
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig('plots/unmet.png')