simple-pv-simulator/main.py
2024-05-13 16:48:16 +02:00

419 lines
15 KiB
Python

#!/usr/bin/env python
# coding: utf-8
import os
import glob
import shutil
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from matplotlib.ticker import FuncFormatter
import numpy as np
import pandas as pd
import os
import seaborn as sns
import json
from matplotlib.colors import LinearSegmentedColormap
def clear_folder_make_ess_pv(folder_path):
if os.path.isdir(folder_path):
shutil.rmtree(folder_path)
os.makedirs(folder_path)
os.makedirs(os.path.join(folder_path,'ess'))
os.makedirs(os.path.join(folder_path,'pv'))
folder_path = 'plots'
clear_folder_make_ess_pv(folder_path)
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import pandas as pd
from EnergySystem import EnergySystem
from config import pv_config, grid_config, ess_config
import json
print("Version 0.0.5")
with open('config.json', 'r') as f:
js_data = json.load(f)
time_interval = js_data["time_interval"]["numerator"] / js_data["time_interval"]["denominator"]
print(time_interval)
pv_loss = js_data["pv"]["loss"]
pv_cost_per_kW = js_data["pv"]["cost_per_kW"]
pv_lifetime = js_data["pv"]["lifetime"]
ess_loss = js_data["ess"]["loss"]
ess_cost_per_kW = js_data["ess"]["cost_per_kW"]
ess_lifetime = js_data["ess"]["lifetime"]
grid_loss = js_data["grid"]["loss"]
sell_price = js_data["grid"]["sell_price"] #kWh
grid_capacity = js_data["grid"]["capacity"] #kWh
pv_begin = js_data["pv_capacities"]["begin"]
pv_end = js_data["pv_capacities"]["end"]
pv_groups = js_data["pv_capacities"]["groups"]
ess_begin = js_data["ess_capacities"]["begin"]
ess_end = js_data["ess_capacities"]["end"]
ess_groups = js_data["ess_capacities"]["groups"]
annot_unmet = js_data["annotated"]["unmet_prob"]
annot_benefit = js_data["annotated"]["benefit"]
annot_cost = js_data["annotated"]["cost"]
annot_roi = js_data["annotated"]["roi"]
title_unmet = js_data["plot_title"]["unmet_prob"]
title_cost = js_data["plot_title"]["cost"]
title_benefit = js_data["plot_title"]["benefit"]
title_roi = js_data["plot_title"]["roi"]
figure_size = (js_data["figure_size"]["length"], js_data["figure_size"]["height"])
data = pd.read_csv('combined_data.csv')
granularity = js_data["time_interval"]["numerator"]
months_days = [31,28,31,30,31,30,31,31,30,31,30,31]
def get_month_coe(num, granularity):
return 60 / granularity * 24 * months_days[num]
months_index = [get_month_coe(num, granularity) for num in range(12)]
months_data = []
for i in range(1,12):
months_index[i] += months_index[i-1]
for i in range(12):
start = 0 if i == 0 else months_index[i-1]
end = months_index[i]
months_data.append(data.iloc[int(start):int(end)])
pv_capacities = np.linspace(pv_begin, pv_end, pv_groups)
ess_capacities = np.linspace(ess_begin, ess_end, ess_groups)
# results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# affords = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# In[ ]:
hour_demand = []
for index, row in data.iterrows():
time = row['time']
demand = row['demand']
if time.endswith('00'):
hour_demand.append(demand)
plt.figure(figsize=(10,8))
plt.plot(hour_demand)
plt.ylabel('Demand Power / kW')
plt.savefig('plots/demand.png')
plt.close()
def draw_results(results, filename, title_benefit, annot_benefit=False, figure_size=(10, 10)):
df=results
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
max_scale = max(abs(min_value/1000), abs(max_value/1000))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x/1000)
cmap = sns.color_palette("coolwarm", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000, fmt=".1f", cmap=cmap, vmin=-max_scale, vmax=max_scale, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_benefit)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
# In[ ]:
def draw_roi(costs, results, filename, title_roi, days=365, annot_roi=False, figure_size=(10, 10)):
costs = costs.astype(float)
costs = costs / 365
costs = costs * days
df = results
df = costs / df
if 0 in df.index and 0 in df.columns:
df.loc[0,0] = 100
df[df > 80] = 100
print(df)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
min_value = df.min().min()
max_value = df.max().max()
print(max_value)
max_scale = max(abs(min_value), abs(max_value))
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x,pos):
return '{:.0f}'.format(x)
cmap = sns.color_palette("Greys", as_cmap=True)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df, fmt=".1f", cmap=cmap, vmin=0, vmax=100, annot=annot_benefit)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_roi)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def draw_cost(costs, filename, title_cost, annot_cost=False, figure_size=(10, 10)):
df = costs
df = df.astype(int)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
df = pd.concat([df, new_Data])
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}'.format(x / 1000000)
plt.figure(figsize=figure_size)
ax = sns.heatmap(df/1000000, fmt=".1f", cmap='viridis', annot=annot_cost)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.title(title_cost)
plt.gca().invert_yaxis()
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def draw_overload(overload_cnt, filename, title_unmet, annot_unmet=False, figure_size=(10, 10), days=365, granularity=15):
df = overload_cnt
print(days, granularity)
coef = 60 / granularity * days * 24
print(coef)
print(df)
df = ( coef - df) / coef
print(df)
df = df.astype(float)
df.index = df.index / 1000
df.index = df.index.map(int)
df.columns = df.columns / 1000
df.columns = df.columns.map(int)
df[df.columns[-1] + 1] = df.iloc[:, -1]
new_Data = pd.DataFrame(index=[df.index[-1] + 1], columns=df.columns)
for i in df.columns:
new_Data[i] = df[i].iloc[-1]
# print(new_Data)
df = pd.concat([df, new_Data])
plt.figure(figsize=figure_size)
cmap = LinearSegmentedColormap.from_list("", ["white", "blue"])
ax = sns.heatmap(df, fmt=".00%", cmap=cmap, vmin=0, vmax=1, annot=annot_unmet)
cbar = ax.collections[0].colorbar
cbar.set_ticks([0, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1])
cbar.set_ticklabels(['0%', '10%', '20%', '30%', '40%', '50%', '60%', '70%', '80%', '90%', '100%'])
cbar.ax.yaxis.set_major_formatter(ticker.FuncFormatter(lambda x, pos: f'{x:.0%}'))
X, Y = np.meshgrid(np.arange(df.shape[1]), np.arange(df.shape[0]))
def fmt(x, pos):
return '{:.0f}%'.format(x * 100)
CS = ax.contour(X, Y, df, colors='black', alpha=0.5)
ax.clabel(CS, inline=True, fontsize=10, fmt=FuncFormatter(fmt))
plt.xlim(0, df.shape[1] - 1)
plt.ylim(0, df.shape[0] - 1)
plt.title(title_unmet)
plt.xlabel('ESS Capacity (MWh)')
plt.ylabel('PV Capacity (MW)')
plt.savefig(filename)
def cal_profit(es: EnergySystem, saved_money, days):
profit = saved_money - es.ess.get_cost_per_year() / 365 * days - es.pv.get_cost_per_year() / 365 * days
return profit
def generate_data(pv_capacity, pv_cost_per_kW, pv_lifetime, pv_loss, ess_capacity, ess_cost_per_kW, ess_lifetime, ess_loss, grid_capacity, grid_loss, sell_price, time_interval, data, days):
pv = pv_config(capacity=pv_capacity,
cost_per_kW=pv_cost_per_kW,
lifetime=pv_lifetime,
loss=pv_loss)
ess = ess_config(capacity=ess_capacity,
cost_per_kW=ess_cost_per_kW,
lifetime=ess_lifetime,
loss=ess_loss,
charge_power=ess_capacity,
discharge_power=ess_capacity)
grid = grid_config(capacity=grid_capacity,
grid_loss=grid_loss,
sell_price= sell_price)
energySystem = EnergySystem(pv_type=pv,
ess_type=ess,
grid_type= grid)
(benefit, netto_benefit, gen_energy) = energySystem.simulate(data, time_interval)
results = cal_profit(energySystem, benefit, days)
overload_cnt = energySystem.overload_cnt
costs = energySystem.ess.capacity * energySystem.ess.cost_per_kW + energySystem.pv.capacity * energySystem.pv.cost_per_kW
return (results, overload_cnt, costs, netto_benefit, gen_energy, energySystem.generated)
months_results = []
months_costs = []
months_overload = []
months_nettos = []
months_gen_energy = []
months_gen_energy2 = []
for index, month_data in enumerate(months_data):
results = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
overload_cnt = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
gen_energies2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities:
(result, overload, cost, netto, gen_energy, gen_energy2) = generate_data(pv_capacity=pv_capacity,pv_cost_per_kW=pv_cost_per_kW, pv_lifetime=pv_lifetime, pv_loss=pv_loss, ess_capacity=ess_capacity, ess_cost_per_kW=ess_cost_per_kW, ess_lifetime=ess_lifetime, ess_loss=ess_loss, grid_capacity=grid_capacity, grid_loss=grid_loss, sell_price=sell_price, time_interval=time_interval, data=month_data, days=months_days[index])
results.loc[pv_capacity,ess_capacity] = result
overload_cnt.loc[pv_capacity,ess_capacity] = overload
costs.loc[pv_capacity,ess_capacity] = cost
nettos.loc[pv_capacity,ess_capacity] = netto
gen_energies.loc[pv_capacity, ess_capacity] = gen_energy
gen_energies2.loc[pv_capacity, ess_capacity] = gen_energy2
months_results.append(results)
months_costs.append(costs)
months_overload.append(overload_cnt)
months_nettos.append(nettos)
months_gen_energy.append(gen_energies)
months_gen_energy2.append(gen_energies2)
draw_results(results=results,
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-benefit.png',
title_benefit=title_benefit,
annot_benefit=annot_benefit,
figure_size=figure_size)
draw_overload(overload_cnt=overload_cnt,
filename=f'plots/pv-{pv_capacity}-ess-{ess_capacity}-month-{index+1}-unmet.png',
title_unmet=title_unmet,
annot_unmet=annot_unmet,
figure_size=figure_size,
days=months_days[index],
granularity=granularity)
annual_result = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_costs = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_overload = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_nettos = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
annual_gen2 = pd.DataFrame(index=pv_capacities, columns= ess_capacities)
# get the yearly results
for pv_capacity in pv_capacities:
for ess_capacity in ess_capacities:
results = 0
costs = 0
overload_cnt = 0
nettos = 0
gen = 0
gen2 = 0
for index, month_data in enumerate(months_data):
results += months_results[index].loc[pv_capacity,ess_capacity]
costs += months_costs[index].loc[pv_capacity,ess_capacity]
overload_cnt += months_overload[index].loc[pv_capacity, ess_capacity]
nettos += months_nettos[index].loc[pv_capacity, ess_capacity]
gen += months_gen_energy[index].loc[pv_capacity, ess_capacity]
gen2 += months_gen_energy[index].loc[pv_capacity, ess_capacity]
annual_result.loc[pv_capacity, ess_capacity] = results
annual_costs.loc[pv_capacity, ess_capacity] = costs
annual_overload.loc[pv_capacity, ess_capacity] = overload_cnt
annual_nettos.loc[pv_capacity, ess_capacity] = nettos
annual_gen.loc[pv_capacity, ess_capacity] = gen
annual_gen2.loc[pv_capacity, ess_capacity] = gen2
draw_cost(costs=annual_costs,
filename='plots/annual_cost.png',
title_cost=title_cost,
annot_cost=annot_cost,
figure_size=figure_size)
draw_results(results=annual_result,
filename='plots/annual_benefit.png',
title_benefit=title_benefit,
annot_benefit=annot_benefit,
figure_size=figure_size)
draw_overload(overload_cnt=annual_overload,
filename='plots/annual_unmet.png',
title_unmet=title_unmet,
annot_unmet=annot_unmet,
figure_size=figure_size)
def save_data(data, filename):
data.to_csv(filename+'.csv')
data.to_json(filename + '.json')
if not os.path.isdir('data'):
os.makedirs('data')
save_data(annual_result, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-results')
save_data(annual_costs, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-costs')
save_data(annual_overload, f'data/{pv_begin}-{pv_end}-{pv_groups}-{ess_begin}-{ess_end}-{ess_groups}-overload_cnt')
draw_results(annual_result, 'plots/test.png', 'test', False)
draw_roi(annual_costs, annual_nettos, 'plots/annual_roi.png', title_roi, 365, annot_benefit, figure_size)