438 lines
15 KiB
Python
438 lines
15 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
|
||
|
#####################################################
|
||
|
import os, time, copy, torch, pathlib
|
||
|
|
||
|
from xautodl import datasets
|
||
|
from xautodl.config_utils import load_config
|
||
|
from xautodl.procedures import prepare_seed, get_optim_scheduler
|
||
|
from xautodl.log_utils import AverageMeter, time_string, convert_secs2time
|
||
|
from xautodl.models import get_cell_based_tiny_net
|
||
|
from xautodl.utils import get_model_infos
|
||
|
from xautodl.procedures.eval_funcs import obtain_accuracy
|
||
|
|
||
|
|
||
|
__all__ = ["evaluate_for_seed", "pure_evaluate", "get_nas_bench_loaders"]
|
||
|
|
||
|
|
||
|
def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()):
|
||
|
data_time, batch_time, batch = AverageMeter(), AverageMeter(), None
|
||
|
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||
|
latencies, device = [], torch.cuda.current_device()
|
||
|
network.eval()
|
||
|
with torch.no_grad():
|
||
|
end = time.time()
|
||
|
for i, (inputs, targets) in enumerate(xloader):
|
||
|
targets = targets.cuda(device=device, non_blocking=True)
|
||
|
inputs = inputs.cuda(device=device, non_blocking=True)
|
||
|
data_time.update(time.time() - end)
|
||
|
# forward
|
||
|
features, logits = network(inputs)
|
||
|
loss = criterion(logits, targets)
|
||
|
batch_time.update(time.time() - end)
|
||
|
if batch is None or batch == inputs.size(0):
|
||
|
batch = inputs.size(0)
|
||
|
latencies.append(batch_time.val - data_time.val)
|
||
|
# record loss and accuracy
|
||
|
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||
|
losses.update(loss.item(), inputs.size(0))
|
||
|
top1.update(prec1.item(), inputs.size(0))
|
||
|
top5.update(prec5.item(), inputs.size(0))
|
||
|
end = time.time()
|
||
|
if len(latencies) > 2:
|
||
|
latencies = latencies[1:]
|
||
|
return losses.avg, top1.avg, top5.avg, latencies
|
||
|
|
||
|
|
||
|
def procedure(xloader, network, criterion, scheduler, optimizer, mode: str):
|
||
|
losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter()
|
||
|
if mode == "train":
|
||
|
network.train()
|
||
|
elif mode == "valid":
|
||
|
network.eval()
|
||
|
else:
|
||
|
raise ValueError("The mode is not right : {:}".format(mode))
|
||
|
device = torch.cuda.current_device()
|
||
|
data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time()
|
||
|
for i, (inputs, targets) in enumerate(xloader):
|
||
|
if mode == "train":
|
||
|
scheduler.update(None, 1.0 * i / len(xloader))
|
||
|
|
||
|
targets = targets.cuda(device=device, non_blocking=True)
|
||
|
if mode == "train":
|
||
|
optimizer.zero_grad()
|
||
|
# forward
|
||
|
features, logits = network(inputs)
|
||
|
loss = criterion(logits, targets)
|
||
|
# backward
|
||
|
if mode == "train":
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
# record loss and accuracy
|
||
|
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
|
||
|
losses.update(loss.item(), inputs.size(0))
|
||
|
top1.update(prec1.item(), inputs.size(0))
|
||
|
top5.update(prec5.item(), inputs.size(0))
|
||
|
# count time
|
||
|
batch_time.update(time.time() - end)
|
||
|
end = time.time()
|
||
|
return losses.avg, top1.avg, top5.avg, batch_time.sum
|
||
|
|
||
|
|
||
|
def evaluate_for_seed(
|
||
|
arch_config, opt_config, train_loader, valid_loaders, seed: int, logger
|
||
|
):
|
||
|
"""A modular function to train and evaluate a single network, using the given random seed and optimization config with the provided loaders."""
|
||
|
prepare_seed(seed) # random seed
|
||
|
net = get_cell_based_tiny_net(arch_config)
|
||
|
# net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num)
|
||
|
flop, param = get_model_infos(net, opt_config.xshape)
|
||
|
logger.log("Network : {:}".format(net.get_message()), False)
|
||
|
logger.log(
|
||
|
"{:} Seed-------------------------- {:} --------------------------".format(
|
||
|
time_string(), seed
|
||
|
)
|
||
|
)
|
||
|
logger.log("FLOP = {:} MB, Param = {:} MB".format(flop, param))
|
||
|
# train and valid
|
||
|
optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), opt_config)
|
||
|
default_device = torch.cuda.current_device()
|
||
|
network = torch.nn.DataParallel(net, device_ids=[default_device]).cuda(
|
||
|
device=default_device
|
||
|
)
|
||
|
criterion = criterion.cuda(device=default_device)
|
||
|
# start training
|
||
|
start_time, epoch_time, total_epoch = (
|
||
|
time.time(),
|
||
|
AverageMeter(),
|
||
|
opt_config.epochs + opt_config.warmup,
|
||
|
)
|
||
|
(
|
||
|
train_losses,
|
||
|
train_acc1es,
|
||
|
train_acc5es,
|
||
|
valid_losses,
|
||
|
valid_acc1es,
|
||
|
valid_acc5es,
|
||
|
) = ({}, {}, {}, {}, {}, {})
|
||
|
train_times, valid_times, lrs = {}, {}, {}
|
||
|
for epoch in range(total_epoch):
|
||
|
scheduler.update(epoch, 0.0)
|
||
|
lr = min(scheduler.get_lr())
|
||
|
train_loss, train_acc1, train_acc5, train_tm = procedure(
|
||
|
train_loader, network, criterion, scheduler, optimizer, "train"
|
||
|
)
|
||
|
train_losses[epoch] = train_loss
|
||
|
train_acc1es[epoch] = train_acc1
|
||
|
train_acc5es[epoch] = train_acc5
|
||
|
train_times[epoch] = train_tm
|
||
|
lrs[epoch] = lr
|
||
|
with torch.no_grad():
|
||
|
for key, xloder in valid_loaders.items():
|
||
|
valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(
|
||
|
xloder, network, criterion, None, None, "valid"
|
||
|
)
|
||
|
valid_losses["{:}@{:}".format(key, epoch)] = valid_loss
|
||
|
valid_acc1es["{:}@{:}".format(key, epoch)] = valid_acc1
|
||
|
valid_acc5es["{:}@{:}".format(key, epoch)] = valid_acc5
|
||
|
valid_times["{:}@{:}".format(key, epoch)] = valid_tm
|
||
|
|
||
|
# measure elapsed time
|
||
|
epoch_time.update(time.time() - start_time)
|
||
|
start_time = time.time()
|
||
|
need_time = "Time Left: {:}".format(
|
||
|
convert_secs2time(epoch_time.avg * (total_epoch - epoch - 1), True)
|
||
|
)
|
||
|
logger.log(
|
||
|
"{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%], lr={:}".format(
|
||
|
time_string(),
|
||
|
need_time,
|
||
|
epoch,
|
||
|
total_epoch,
|
||
|
train_loss,
|
||
|
train_acc1,
|
||
|
train_acc5,
|
||
|
valid_loss,
|
||
|
valid_acc1,
|
||
|
valid_acc5,
|
||
|
lr,
|
||
|
)
|
||
|
)
|
||
|
info_seed = {
|
||
|
"flop": flop,
|
||
|
"param": param,
|
||
|
"arch_config": arch_config._asdict(),
|
||
|
"opt_config": opt_config._asdict(),
|
||
|
"total_epoch": total_epoch,
|
||
|
"train_losses": train_losses,
|
||
|
"train_acc1es": train_acc1es,
|
||
|
"train_acc5es": train_acc5es,
|
||
|
"train_times": train_times,
|
||
|
"valid_losses": valid_losses,
|
||
|
"valid_acc1es": valid_acc1es,
|
||
|
"valid_acc5es": valid_acc5es,
|
||
|
"valid_times": valid_times,
|
||
|
"learning_rates": lrs,
|
||
|
"net_state_dict": net.state_dict(),
|
||
|
"net_string": "{:}".format(net),
|
||
|
"finish-train": True,
|
||
|
}
|
||
|
return info_seed
|
||
|
|
||
|
|
||
|
def get_nas_bench_loaders(workers):
|
||
|
|
||
|
torch.set_num_threads(workers)
|
||
|
|
||
|
root_dir = (pathlib.Path(__file__).parent / ".." / "..").resolve()
|
||
|
torch_dir = pathlib.Path(os.environ["TORCH_HOME"])
|
||
|
# cifar
|
||
|
cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config"
|
||
|
cifar_config = load_config(cifar_config_path, None, None)
|
||
|
get_datasets = datasets.get_datasets # a function to return the dataset
|
||
|
break_line = "-" * 150
|
||
|
print("{:} Create data-loader for all datasets".format(time_string()))
|
||
|
print(break_line)
|
||
|
TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets(
|
||
|
"cifar10", str(torch_dir / "cifar.python"), -1
|
||
|
)
|
||
|
print(
|
||
|
"original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
|
||
|
len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num
|
||
|
)
|
||
|
)
|
||
|
cifar10_splits = load_config(
|
||
|
root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None
|
||
|
)
|
||
|
assert cifar10_splits.train[:10] == [
|
||
|
0,
|
||
|
5,
|
||
|
7,
|
||
|
11,
|
||
|
13,
|
||
|
15,
|
||
|
16,
|
||
|
17,
|
||
|
20,
|
||
|
24,
|
||
|
] and cifar10_splits.valid[:10] == [
|
||
|
1,
|
||
|
2,
|
||
|
3,
|
||
|
4,
|
||
|
6,
|
||
|
8,
|
||
|
9,
|
||
|
10,
|
||
|
12,
|
||
|
14,
|
||
|
]
|
||
|
temp_dataset = copy.deepcopy(TRAIN_CIFAR10)
|
||
|
temp_dataset.transform = VALID_CIFAR10.transform
|
||
|
# data loader
|
||
|
trainval_cifar10_loader = torch.utils.data.DataLoader(
|
||
|
TRAIN_CIFAR10,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
shuffle=True,
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
train_cifar10_loader = torch.utils.data.DataLoader(
|
||
|
TRAIN_CIFAR10,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train),
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
valid_cifar10_loader = torch.utils.data.DataLoader(
|
||
|
temp_dataset,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid),
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
test__cifar10_loader = torch.utils.data.DataLoader(
|
||
|
VALID_CIFAR10,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
shuffle=False,
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-10 : trval-loader has {:3d} batch with {:} per batch".format(
|
||
|
len(trainval_cifar10_loader), cifar_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-10 : train-loader has {:3d} batch with {:} per batch".format(
|
||
|
len(train_cifar10_loader), cifar_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-10 : valid-loader has {:3d} batch with {:} per batch".format(
|
||
|
len(valid_cifar10_loader), cifar_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-10 : test--loader has {:3d} batch with {:} per batch".format(
|
||
|
len(test__cifar10_loader), cifar_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
print(break_line)
|
||
|
# CIFAR-100
|
||
|
TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets(
|
||
|
"cifar100", str(torch_dir / "cifar.python"), -1
|
||
|
)
|
||
|
print(
|
||
|
"original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
|
||
|
len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num
|
||
|
)
|
||
|
)
|
||
|
cifar100_splits = load_config(
|
||
|
root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None
|
||
|
)
|
||
|
assert cifar100_splits.xvalid[:10] == [
|
||
|
1,
|
||
|
3,
|
||
|
4,
|
||
|
5,
|
||
|
8,
|
||
|
10,
|
||
|
13,
|
||
|
14,
|
||
|
15,
|
||
|
16,
|
||
|
] and cifar100_splits.xtest[:10] == [
|
||
|
0,
|
||
|
2,
|
||
|
6,
|
||
|
7,
|
||
|
9,
|
||
|
11,
|
||
|
12,
|
||
|
17,
|
||
|
20,
|
||
|
24,
|
||
|
]
|
||
|
train_cifar100_loader = torch.utils.data.DataLoader(
|
||
|
TRAIN_CIFAR100,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
shuffle=True,
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
valid_cifar100_loader = torch.utils.data.DataLoader(
|
||
|
VALID_CIFAR100,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid),
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
test__cifar100_loader = torch.utils.data.DataLoader(
|
||
|
VALID_CIFAR100,
|
||
|
batch_size=cifar_config.batch_size,
|
||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest),
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-100 : train-loader has {:3d} batch".format(len(train_cifar100_loader))
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-100 : valid-loader has {:3d} batch".format(len(valid_cifar100_loader))
|
||
|
)
|
||
|
print(
|
||
|
"CIFAR-100 : test--loader has {:3d} batch".format(len(test__cifar100_loader))
|
||
|
)
|
||
|
print(break_line)
|
||
|
|
||
|
imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config"
|
||
|
imagenet16_config = load_config(imagenet16_config_path, None, None)
|
||
|
TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets(
|
||
|
"ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1
|
||
|
)
|
||
|
print(
|
||
|
"original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format(
|
||
|
len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num
|
||
|
)
|
||
|
)
|
||
|
imagenet_splits = load_config(
|
||
|
root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt",
|
||
|
None,
|
||
|
None,
|
||
|
)
|
||
|
assert imagenet_splits.xvalid[:10] == [
|
||
|
1,
|
||
|
2,
|
||
|
3,
|
||
|
6,
|
||
|
7,
|
||
|
8,
|
||
|
9,
|
||
|
12,
|
||
|
16,
|
||
|
18,
|
||
|
] and imagenet_splits.xtest[:10] == [
|
||
|
0,
|
||
|
4,
|
||
|
5,
|
||
|
10,
|
||
|
11,
|
||
|
13,
|
||
|
14,
|
||
|
15,
|
||
|
17,
|
||
|
20,
|
||
|
]
|
||
|
train_imagenet_loader = torch.utils.data.DataLoader(
|
||
|
TRAIN_ImageNet16_120,
|
||
|
batch_size=imagenet16_config.batch_size,
|
||
|
shuffle=True,
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
valid_imagenet_loader = torch.utils.data.DataLoader(
|
||
|
VALID_ImageNet16_120,
|
||
|
batch_size=imagenet16_config.batch_size,
|
||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid),
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
test__imagenet_loader = torch.utils.data.DataLoader(
|
||
|
VALID_ImageNet16_120,
|
||
|
batch_size=imagenet16_config.batch_size,
|
||
|
sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest),
|
||
|
num_workers=workers,
|
||
|
pin_memory=True,
|
||
|
)
|
||
|
print(
|
||
|
"ImageNet-16-120 : train-loader has {:3d} batch with {:} per batch".format(
|
||
|
len(train_imagenet_loader), imagenet16_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
print(
|
||
|
"ImageNet-16-120 : valid-loader has {:3d} batch with {:} per batch".format(
|
||
|
len(valid_imagenet_loader), imagenet16_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
print(
|
||
|
"ImageNet-16-120 : test--loader has {:3d} batch with {:} per batch".format(
|
||
|
len(test__imagenet_loader), imagenet16_config.batch_size
|
||
|
)
|
||
|
)
|
||
|
|
||
|
# 'cifar10', 'cifar100', 'ImageNet16-120'
|
||
|
loaders = {
|
||
|
"cifar10@trainval": trainval_cifar10_loader,
|
||
|
"cifar10@train": train_cifar10_loader,
|
||
|
"cifar10@valid": valid_cifar10_loader,
|
||
|
"cifar10@test": test__cifar10_loader,
|
||
|
"cifar100@train": train_cifar100_loader,
|
||
|
"cifar100@valid": valid_cifar100_loader,
|
||
|
"cifar100@test": test__cifar100_loader,
|
||
|
"ImageNet16-120@train": train_imagenet_loader,
|
||
|
"ImageNet16-120@valid": valid_imagenet_loader,
|
||
|
"ImageNet16-120@test": test__imagenet_loader,
|
||
|
}
|
||
|
return loaders
|