swap-nas/AutoDL-Projects/xautodl/procedures/q_exps.py

151 lines
5.2 KiB
Python
Raw Permalink Normal View History

2024-08-25 18:02:31 +02:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.02 #
#####################################################
import inspect
import os
import pprint
import logging
from copy import deepcopy
import qlib
from qlib.utils import init_instance_by_config
from qlib.workflow import R
from qlib.utils import flatten_dict
from qlib.log import get_module_logger
def set_log_basic_config(filename=None, format=None, level=None):
"""
Set the basic configuration for the logging system.
See details at https://docs.python.org/3/library/logging.html#logging.basicConfig
:param filename: str or None
The path to save the logs.
:param format: the logging format
:param level: int
:return: Logger
Logger object.
"""
from qlib.config import C
if level is None:
level = C.logging_level
if format is None:
format = C.logging_config["formatters"]["logger_format"]["format"]
# Remove all handlers associated with the root logger object.
for handler in logging.root.handlers[:]:
logging.root.removeHandler(handler)
logging.basicConfig(filename=filename, format=format, level=level)
def update_gpu(config, gpu):
config = deepcopy(config)
if "task" in config and "model" in config["task"]:
if "GPU" in config["task"]["model"]:
config["task"]["model"]["GPU"] = gpu
elif (
"kwargs" in config["task"]["model"]
and "GPU" in config["task"]["model"]["kwargs"]
):
config["task"]["model"]["kwargs"]["GPU"] = gpu
elif "model" in config:
if "GPU" in config["model"]:
config["model"]["GPU"] = gpu
elif "kwargs" in config["model"] and "GPU" in config["model"]["kwargs"]:
config["model"]["kwargs"]["GPU"] = gpu
elif "kwargs" in config and "GPU" in config["kwargs"]:
config["kwargs"]["GPU"] = gpu
elif "GPU" in config:
config["GPU"] = gpu
return config
def update_market(config, market):
config = deepcopy(config.copy())
config["market"] = market
config["data_handler_config"]["instruments"] = market
return config
def run_exp(
task_config,
dataset,
experiment_name,
recorder_name,
uri,
model_obj_name="model.pkl",
):
model = init_instance_by_config(task_config["model"])
model_fit_kwargs = dict(dataset=dataset)
# Let's start the experiment.
with R.start(
experiment_name=experiment_name,
recorder_name=recorder_name,
uri=uri,
resume=True,
):
# Setup log
recorder_root_dir = R.get_recorder().get_local_dir()
log_file = os.path.join(recorder_root_dir, "{:}.log".format(experiment_name))
set_log_basic_config(log_file)
logger = get_module_logger("q.run_exp")
logger.info("task_config::\n{:}".format(pprint.pformat(task_config, indent=2)))
logger.info("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri))
logger.info("dataset={:}".format(dataset))
# Train model
try:
if hasattr(model, "to"): # Recoverable model
ori_device = model.device
model = R.load_object(model_obj_name)
model.to(ori_device)
else:
model = R.load_object(model_obj_name)
logger.info("[Find existing object from {:}]".format(model_obj_name))
except OSError:
R.log_params(**flatten_dict(update_gpu(task_config, None)))
if "save_path" in inspect.getfullargspec(model.fit).args:
model_fit_kwargs["save_path"] = os.path.join(
recorder_root_dir, "model.ckp"
)
elif "save_dir" in inspect.getfullargspec(model.fit).args:
model_fit_kwargs["save_dir"] = os.path.join(
recorder_root_dir, "model-ckps"
)
model.fit(**model_fit_kwargs)
# remove model to CPU for saving
if hasattr(model, "to"):
old_device = model.device
model.to("cpu")
R.save_objects(**{model_obj_name: model})
model.to(old_device)
else:
R.save_objects(**{model_obj_name: model})
except Exception as e:
raise ValueError("Something wrong: {:}".format(e))
# Get the recorder
recorder = R.get_recorder()
# Generate records: prediction, backtest, and analysis
for record in task_config["record"]:
record = deepcopy(record)
if record["class"] == "MultiSegRecord":
record["kwargs"] = dict(model=model, dataset=dataset, recorder=recorder)
sr = init_instance_by_config(record)
sr.generate(**record["generate_kwargs"])
elif record["class"] == "SignalRecord":
srconf = {"model": model, "dataset": dataset, "recorder": recorder}
record["kwargs"].update(srconf)
sr = init_instance_by_config(record)
sr.generate()
else:
rconf = {"recorder": recorder}
record["kwargs"].update(rconf)
ar = init_instance_by_config(record)
ar.generate()