first commit
This commit is contained in:
		
							
								
								
									
										33
									
								
								README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										33
									
								
								README.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,33 @@ | ||||
| # Sample-Wise Activation Patterns for Ultra-Fast NAS <br/> (ICLR 2024 Spotlight) | ||||
| Training-free metrics (a.k.a. zero-cost proxies) are widely used to avoid resource-intensive neural network training, especially in Neural Architecture Search (NAS). Recent studies show that existing training-free metrics have several limitations, such as limited correlation and poor generalisation across different search spaces and tasks. Hence, we propose Sample-Wise Activation Patterns and its derivative, SWAP-Score, a novel high-performance training-free metric. It measures the expressivity of networks over a batch of input samples. The SWAP-Score is strongly correlated with ground-truth performance across various search spaces and tasks, outperforming 15 existing training-free metrics on NAS-Bench-101/201/301 and TransNAS-Bench-101. | ||||
|  | ||||
| # Usage | ||||
|  | ||||
| The following instruction demonstrates the usage of evaluating network's performance through SWAP-Score. | ||||
|  | ||||
| **/src/metrics/swap.py** contains the core components of SWAP-Score.  | ||||
|  | ||||
| **/datasets/DARTS_archs_CIFAR10.csv** contains 1000 architectures (randomly sampled from DARTS space) along with their CIFAR-10 validation accuracies (trained for 200 epochs). | ||||
|  | ||||
| * Install necessary dependencies (a new virtual environment is suggested). | ||||
| ``` | ||||
| cd SWAP | ||||
| pip install -r requirements.txt | ||||
| ``` | ||||
| * Calculate the correlation between SWAP-Score and CIFAR-10 validation accuracies of 1000 DARTS architectures. | ||||
| ``` | ||||
| python correlation.py | ||||
| ``` | ||||
|  | ||||
|  | ||||
| If you use or build on our code, please consider citing our paper: | ||||
| ``` | ||||
| @inproceedings{ | ||||
| peng2024swapnas, | ||||
| title={{SWAP}-{NAS}: Sample-Wise Activation Patterns for Ultra-fast {NAS}}, | ||||
| author={Yameng Peng and Andy Song and Haytham M. Fayek and Vic Ciesielski and Xiaojun Chang}, | ||||
| booktitle={The Twelfth International Conference on Learning Representations}, | ||||
| year={2024}, | ||||
| url={https://openreview.net/forum?id=tveiUXU2aa} | ||||
| } | ||||
| ``` | ||||
							
								
								
									
										66
									
								
								correlation.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										66
									
								
								correlation.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,66 @@ | ||||
| import os | ||||
| os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' | ||||
| import argparse | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| from scipy import stats | ||||
| from src.utils.utilities import * | ||||
| from src.metrics.swap import SWAP | ||||
| from src.datasets.utilities import get_datasets | ||||
| from src.search_space.networks import * | ||||
|  | ||||
| # Settings for console outputs | ||||
| import warnings | ||||
| warnings.simplefilter(action='ignore', category=FutureWarning) | ||||
| warnings.simplefilter(action='ignore', category=UserWarning) | ||||
|  | ||||
| parser = argparse.ArgumentParser() | ||||
|  | ||||
| # general setting | ||||
| parser.add_argument('--data_path', default="datasets", type=str, nargs='?', help='path to the image dataset (datasets or datasets/ILSVRC/Data/CLS-LOC)') | ||||
| parser.add_argument('--seed', default=0, type=int, help='random seed') | ||||
| parser.add_argument('--device', default="mps", type=str, nargs='?', help='setup device (cpu, mps or cuda)') | ||||
| parser.add_argument('--repeats', default=32, type=int, nargs='?', help='times of calculating the training-free metric') | ||||
| parser.add_argument('--input_samples', default=16, type=int, nargs='?', help='input batch size for training-free metric') | ||||
|  | ||||
| args = parser.parse_args() | ||||
|  | ||||
| if __name__ == "__main__": | ||||
|      | ||||
|     device = torch.device(args.device) | ||||
|  | ||||
|     arch_info = pd.read_csv(args.data_path+'/DARTS_archs_CIFAR10.csv', names=['genotype', 'valid_acc'], sep=',') | ||||
|      | ||||
|     train_data, _, _ = get_datasets('cifar10', args.data_path, (args.input_samples, 3, 32, 32), -1) | ||||
|     train_loader = torch.utils.data.DataLoader(train_data, batch_size=args.input_samples, num_workers=0, pin_memory=True) | ||||
|     loader = iter(train_loader) | ||||
|     inputs, _ = next(loader)   | ||||
|  | ||||
|     results = [] | ||||
|      | ||||
|     for index, i in arch_info.iterrows(): | ||||
|         print(f'Evaluating network: {index}') | ||||
|  | ||||
|         network = Network(3, 10, 1, eval(i.genotype)) | ||||
|         network = network.to(device) | ||||
|  | ||||
|         swap = SWAP(model=network, inputs=inputs, device=device, seed=args.seed) | ||||
|  | ||||
|         swap_score = [] | ||||
|  | ||||
|         for _ in range(args.repeats): | ||||
|             network = network.apply(network_weight_gaussian_init) | ||||
|             swap.reinit() | ||||
|             swap_score.append(swap.forward()) | ||||
|             swap.clear() | ||||
|  | ||||
|         results.append([np.mean(swap_score), i.valid_acc]) | ||||
|  | ||||
|     results = pd.DataFrame(results, columns=['swap_score', 'valid_acc']) | ||||
|     print()     | ||||
|     print(f'Spearman\'s Correlation Coefficient: {stats.spearmanr(results.swap_score, results.valid_acc)[0]}') | ||||
|      | ||||
|  | ||||
|  | ||||
							
								
								
									
										1000
									
								
								datasets/DARTS_archs_CIFAR10.csv
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1000
									
								
								datasets/DARTS_archs_CIFAR10.csv
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because it is too large
												Load Diff
											
										
									
								
							
							
								
								
									
										5
									
								
								requirements.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								requirements.txt
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,5 @@ | ||||
| numpy>=1.24.2 | ||||
| pandas>=1.5.3 | ||||
| scipy>=1.10.0 | ||||
| torch>=2.0.1 | ||||
| torchvision>=0.15.2 | ||||
							
								
								
									
										0
									
								
								src/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										109
									
								
								src/datasets/DownsampledImageNet.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										109
									
								
								src/datasets/DownsampledImageNet.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,109 @@ | ||||
| import os, sys, hashlib | ||||
| import numpy as np | ||||
| from PIL import Image | ||||
| import torch.utils.data as data | ||||
| if sys.version_info[0] == 2: | ||||
|     import cPickle as pickle | ||||
| else: | ||||
|     import pickle | ||||
|  | ||||
|  | ||||
| def calculate_md5(fpath, chunk_size=1024 * 1024): | ||||
|     md5 = hashlib.md5() | ||||
|     with open(fpath, 'rb') as f: | ||||
|         for chunk in iter(lambda: f.read(chunk_size), b''): | ||||
|             md5.update(chunk) | ||||
|     return md5.hexdigest() | ||||
|  | ||||
|  | ||||
| def check_md5(fpath, md5, **kwargs): | ||||
|     return md5 == calculate_md5(fpath, **kwargs) | ||||
|  | ||||
|  | ||||
| def check_integrity(fpath, md5=None): | ||||
|     if not os.path.isfile(fpath): return False | ||||
|     if md5 is None: return True | ||||
|     else          : return check_md5(fpath, md5) | ||||
|  | ||||
|  | ||||
| class ImageNet16(data.Dataset): | ||||
|     # http://image-net.org/download-images | ||||
|     # A Downsampled Variant of ImageNet as an Alternative to the CIFAR datasets | ||||
|     # https://arxiv.org/pdf/1707.08819.pdf | ||||
|  | ||||
|     train_list = [ | ||||
|                 ['train_data_batch_1', '27846dcaa50de8e21a7d1a35f30f0e91'], | ||||
|                 ['train_data_batch_2', 'c7254a054e0e795c69120a5727050e3f'], | ||||
|                 ['train_data_batch_3', '4333d3df2e5ffb114b05d2ffc19b1e87'], | ||||
|                 ['train_data_batch_4', '1620cdf193304f4a92677b695d70d10f'], | ||||
|                 ['train_data_batch_5', '348b3c2fdbb3940c4e9e834affd3b18d'], | ||||
|                 ['train_data_batch_6', '6e765307c242a1b3d7d5ef9139b48945'], | ||||
|                 ['train_data_batch_7', '564926d8cbf8fc4818ba23d2faac7564'], | ||||
|                 ['train_data_batch_8', 'f4755871f718ccb653440b9dd0ebac66'], | ||||
|                 ['train_data_batch_9', 'bb6dd660c38c58552125b1a92f86b5d4'], | ||||
|                 ['train_data_batch_10','8f03f34ac4b42271a294f91bf480f29b'], | ||||
|         ] | ||||
|     valid_list = [ | ||||
|                 ['val_data', '3410e3017fdaefba8d5073aaa65e4bd6'], | ||||
|         ] | ||||
|  | ||||
|     def __init__(self, root, train, transform, use_num_of_class_only=None): | ||||
|         self.root      = root | ||||
|         self.transform = transform | ||||
|         self.train     = train  # training set or valid set | ||||
|         if not self._check_integrity(): raise RuntimeError('Dataset not found or corrupted.') | ||||
|  | ||||
|         if self.train: downloaded_list = self.train_list | ||||
|         else         : downloaded_list = self.valid_list | ||||
|         self.data    = [] | ||||
|         self.targets = [] | ||||
|  | ||||
|         # now load the picked numpy arrays | ||||
|         for i, (file_name, checksum) in enumerate(downloaded_list): | ||||
|             file_path = os.path.join(self.root, file_name) | ||||
|             #print ('Load {:}/{:02d}-th : {:}'.format(i, len(downloaded_list), file_path)) | ||||
|             with open(file_path, 'rb') as f: | ||||
|                 if sys.version_info[0] == 2: | ||||
|                     entry = pickle.load(f) | ||||
|                 else: | ||||
|                     entry = pickle.load(f, encoding='latin1') | ||||
|                 self.data.append(entry['data']) | ||||
|                 self.targets.extend(entry['labels']) | ||||
|         self.data = np.vstack(self.data).reshape(-1, 3, 16, 16) | ||||
|         self.data = self.data.transpose((0, 2, 3, 1))  # convert to HWC | ||||
|         if use_num_of_class_only is not None: | ||||
|             assert isinstance(use_num_of_class_only, int) and use_num_of_class_only > 0 and use_num_of_class_only < 1000, 'invalid use_num_of_class_only : {:}'.format(use_num_of_class_only) | ||||
|             new_data, new_targets = [], [] | ||||
|             for I, L in zip(self.data, self.targets): | ||||
|                 if 1 <= L <= use_num_of_class_only: | ||||
|                     new_data.append( I ) | ||||
|                     new_targets.append( L ) | ||||
|             self.data    = new_data | ||||
|             self.targets = new_targets | ||||
|  | ||||
|  | ||||
|     def __getitem__(self, index): | ||||
|         img, target = self.data[index], self.targets[index] - 1 | ||||
|  | ||||
|         img = Image.fromarray(img) | ||||
|  | ||||
|         if self.transform is not None: | ||||
|             img = self.transform(img) | ||||
|  | ||||
|         return img, target | ||||
|  | ||||
|     def __len__(self): | ||||
|         return len(self.data) | ||||
|  | ||||
|     def _check_integrity(self): | ||||
|         root = self.root | ||||
|         for fentry in (self.train_list + self.valid_list): | ||||
|             filename, md5 = fentry[0], fentry[1] | ||||
|             fpath = os.path.join(root, filename) | ||||
|             if not check_integrity(fpath, md5): | ||||
|                 return False | ||||
|         return True | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     pass | ||||
							
								
								
									
										0
									
								
								src/datasets/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/datasets/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										115
									
								
								src/datasets/utilities.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										115
									
								
								src/datasets/utilities.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,115 @@ | ||||
| import os.path as osp | ||||
| import numpy as np | ||||
| import torch | ||||
| import torchvision.transforms as transforms | ||||
| import torchvision.datasets as dset | ||||
| from .DownsampledImageNet import ImageNet16 | ||||
| from sklearn.model_selection import StratifiedKFold | ||||
|  | ||||
| Dataset2Class = {'cifar10': 10, | ||||
|                  'cifar100': 100, | ||||
|                  'imagenet-1k-s': 1000, | ||||
|                  'imagenet-1k': 1000, | ||||
|                  'ImageNet16' : 1000, | ||||
|                  'ImageNet16-120': 120, | ||||
|                  'ImageNet16-150': 150, | ||||
|                  'ImageNet16-200': 200} | ||||
|  | ||||
| class RandChannel(object): | ||||
|     # randomly pick channels from input | ||||
|     def __init__(self, num_channel): | ||||
|         self.num_channel = num_channel | ||||
|  | ||||
|     def __repr__(self): | ||||
|         return ('{name}(num_channel={num_channel})'.format(name=self.__class__.__name__, **self.__dict__)) | ||||
|  | ||||
|     def __call__(self, img): | ||||
|         channel = img.size(0) | ||||
|         channel_choice = sorted(np.random.choice(list(range(channel)), size=self.num_channel, replace=False)) | ||||
|         return torch.index_select(img, 0, torch.Tensor(channel_choice).long()) | ||||
|  | ||||
|  | ||||
| def get_datasets(name, root, input_size, cutout=-1): | ||||
|     assert len(input_size) in [3, 4] | ||||
|     if len(input_size) == 4: | ||||
|         input_size = input_size[1:] | ||||
|     assert input_size[1] == input_size[2] | ||||
|  | ||||
|     if name == 'cifar10': | ||||
|         mean = [0.49139968, 0.48215827, 0.44653124] | ||||
|         std  = [0.24703233, 0.24348505, 0.26158768] | ||||
|     elif name == 'cifar100': | ||||
|         mean = [0.5071, 0.4865, 0.4409] | ||||
|         std  = [0.2673, 0.2564, 0.2762] | ||||
|     elif name.startswith('imagenet-1k'): | ||||
|         mean, std = [0.485, 0.456, 0.406], [0.229, 0.224, 0.225] | ||||
|     elif name.startswith('ImageNet16'): | ||||
|         mean = [0.481098, 0.45749, 0.407882] | ||||
|         std  = [0.247922, 0.240235, 0.255255] | ||||
|     else: | ||||
|         raise TypeError("Unknow dataset : {:}".format(name)) | ||||
|  | ||||
|     # Data Argumentation | ||||
|     if name == 'cifar10' or name == 'cifar100': | ||||
|         lists = [transforms.RandomCrop(input_size[1], padding=0), transforms.ToTensor(), transforms.Normalize(mean, std), RandChannel(input_size[0])] | ||||
|         if cutout > 0 : lists += [CUTOUT(cutout)] | ||||
|         train_transform = transforms.Compose(lists) | ||||
|         test_transform  = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|     elif name.startswith('ImageNet16'): | ||||
|         lists = [transforms.RandomCrop(input_size[1], padding=0), transforms.ToTensor(), transforms.Normalize(mean, std), RandChannel(input_size[0])] | ||||
|         if cutout > 0 : lists += [CUTOUT(cutout)] | ||||
|         train_transform = transforms.Compose(lists) | ||||
|         test_transform  = transforms.Compose([transforms.ToTensor(), transforms.Normalize(mean, std)]) | ||||
|     elif name.startswith('imagenet-1k'): | ||||
|         normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) | ||||
|         if name == 'imagenet-1k': | ||||
|             xlists    = [] | ||||
|             xlists.append(transforms.Resize((input_size[1], input_size[1]), interpolation=2)) | ||||
|             xlists.append(transforms.RandomCrop(input_size[1], padding=0)) | ||||
|         elif name == 'imagenet-1k-s': | ||||
|             xlists = [transforms.RandomResizedCrop(input_size[1], scale=(0.2, 1.0))] | ||||
|             xlists = [] | ||||
|         else: raise ValueError('invalid name : {:}'.format(name)) | ||||
|         xlists.append(transforms.ToTensor()) | ||||
|         xlists.append(normalize) | ||||
|         xlists.append(RandChannel(input_size[0])) | ||||
|         train_transform = transforms.Compose(xlists) | ||||
|         test_transform = transforms.Compose([transforms.Resize(input_size[1]), transforms.CenterCrop(input_size[1]), transforms.ToTensor(), normalize]) | ||||
|     else: | ||||
|         raise TypeError("Unknow dataset : {:}".format(name)) | ||||
|  | ||||
|     if name == 'cifar10': | ||||
|         train_data = dset.CIFAR10 (root, train=True , transform=train_transform, download=True) | ||||
|         test_data  = dset.CIFAR10 (root, train=False, transform=test_transform , download=True) | ||||
|         assert len(train_data) == 50000 and len(test_data) == 10000 | ||||
|     elif name == 'cifar100': | ||||
|         train_data = dset.CIFAR100(root, train=True , transform=train_transform, download=True) | ||||
|         test_data  = dset.CIFAR100(root, train=False, transform=test_transform , download=True) | ||||
|         assert len(train_data) == 50000 and len(test_data) == 10000 | ||||
|     elif name.startswith('imagenet-1k'): | ||||
|         train_data = dset.ImageFolder(osp.join(root, 'train'), train_transform) | ||||
|         test_data  = dset.ImageFolder(osp.join(root, 'val'),   test_transform) | ||||
|     elif name == 'ImageNet16': | ||||
|         root = osp.join(root, 'ImageNet16') | ||||
|         train_data = ImageNet16(root, True , train_transform) | ||||
|         test_data  = ImageNet16(root, False, test_transform) | ||||
|         assert len(train_data) == 1281167 and len(test_data) == 50000 | ||||
|     elif name == 'ImageNet16-120': | ||||
|         root = osp.join(root, 'ImageNet16') | ||||
|         train_data = ImageNet16(root, True , train_transform, 120) | ||||
|         test_data  = ImageNet16(root, False, test_transform , 120) | ||||
|         assert len(train_data) == 151700 and len(test_data) == 6000 | ||||
|     elif name == 'ImageNet16-150': | ||||
|         root = osp.join(root, 'ImageNet16') | ||||
|         train_data = ImageNet16(root, True , train_transform, 150) | ||||
|         test_data  = ImageNet16(root, False, test_transform , 150) | ||||
|         assert len(train_data) == 190272 and len(test_data) == 7500 | ||||
|     elif name == 'ImageNet16-200': | ||||
|         root = osp.join(root, 'ImageNet16') | ||||
|         train_data = ImageNet16(root, True , train_transform, 200) | ||||
|         test_data  = ImageNet16(root, False, test_transform , 200) | ||||
|         assert len(train_data) == 254775 and len(test_data) == 10000 | ||||
|     else: raise TypeError("Unknow dataset : {:}".format(name)) | ||||
|  | ||||
|     class_num = Dataset2Class[name] | ||||
|     return train_data, test_data, class_num | ||||
							
								
								
									
										0
									
								
								src/metrics/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/metrics/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										99
									
								
								src/metrics/swap.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								src/metrics/swap.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,99 @@ | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from src.utils.utilities import count_parameters | ||||
|  | ||||
| def cal_regular_factor(model, mu, sigma): | ||||
|  | ||||
|     model_params = torch.as_tensor(count_parameters(model)) | ||||
|     regular_factor =  torch.exp(-(torch.pow((model_params-mu),2)/sigma)) | ||||
|     | ||||
|     return regular_factor | ||||
|  | ||||
|  | ||||
| class SampleWiseActivationPatterns(object): | ||||
|     def __init__(self, device): | ||||
|         self.swap = -1  | ||||
|         self.activations = None | ||||
|         self.device = device | ||||
|  | ||||
|     @torch.no_grad() | ||||
|     def collect_activations(self, activations): | ||||
|         n_sample = activations.size()[0] | ||||
|         n_neuron = activations.size()[1] | ||||
|  | ||||
|         if self.activations is None: | ||||
|             self.activations = torch.zeros(n_sample, n_neuron).to(self.device)   | ||||
|  | ||||
|         self.activations = torch.sign(activations) | ||||
|  | ||||
|     @torch.no_grad() | ||||
|     def calSWAP(self, regular_factor): | ||||
|          | ||||
|         self.activations = self.activations.T # transpose the activation matrix: (samples, neurons) to (neurons, samples) | ||||
|         self.swap = torch.unique(self.activations, dim=0).size(0) | ||||
|          | ||||
|         del self.activations | ||||
|         self.activations = None | ||||
|         torch.cuda.empty_cache() | ||||
|  | ||||
|         return self.swap * regular_factor | ||||
|  | ||||
|  | ||||
| class SWAP: | ||||
|     def __init__(self, model=None, inputs = None, device='cuda', seed=0, regular=False, mu=None, sigma=None): | ||||
|         self.model = model | ||||
|         self.interFeature = [] | ||||
|         self.seed = seed | ||||
|         self.regular_factor = 1 | ||||
|         self.inputs = inputs | ||||
|         self.device = device | ||||
|  | ||||
|         if regular and mu is not None and sigma is not None: | ||||
|             self.regular_factor = cal_regular_factor(self.model, mu, sigma).item() | ||||
|  | ||||
|         self.reinit(self.model, self.seed) | ||||
|  | ||||
|     def reinit(self, model=None, seed=None): | ||||
|         if model is not None: | ||||
|             self.model = model | ||||
|             self.register_hook(self.model) | ||||
|             self.swap = SampleWiseActivationPatterns(self.device) | ||||
|  | ||||
|         if seed is not None and seed != self.seed: | ||||
|             self.seed = seed | ||||
|             torch.manual_seed(seed) | ||||
|             torch.cuda.manual_seed(seed) | ||||
|         del self.interFeature | ||||
|         self.interFeature = [] | ||||
|         torch.cuda.empty_cache() | ||||
|  | ||||
|     def clear(self): | ||||
|         self.swap = SampleWiseActivationPatterns(self.device) | ||||
|         del self.interFeature | ||||
|         self.interFeature = [] | ||||
|         torch.cuda.empty_cache() | ||||
|  | ||||
|     def register_hook(self, model): | ||||
|         for n, m in model.named_modules(): | ||||
|             if isinstance(m, nn.ReLU): | ||||
|                 m.register_forward_hook(hook=self.hook_in_forward) | ||||
|  | ||||
|     def hook_in_forward(self, module, input, output): | ||||
|         if isinstance(input, tuple) and len(input[0].size()) == 4: | ||||
|             self.interFeature.append(output.detach())  | ||||
|  | ||||
|     def forward(self): | ||||
|         self.interFeature = [] | ||||
|         with torch.no_grad(): | ||||
|             self.model.forward(self.inputs.to(self.device)) | ||||
|             if len(self.interFeature) == 0: return | ||||
|             activtions = torch.cat([f.view(self.inputs.size(0), -1) for f in self.interFeature], 1)          | ||||
|             self.swap.collect_activations(activtions) | ||||
|              | ||||
|             return self.swap.calSWAP(self.regular_factor) | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
|  | ||||
							
								
								
									
										0
									
								
								src/search_space/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/search_space/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										105
									
								
								src/search_space/networks.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										105
									
								
								src/search_space/networks.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,105 @@ | ||||
| from .operations import * | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
| from collections import namedtuple | ||||
|  | ||||
| Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') | ||||
|  | ||||
| def drop_path(x, drop_prob): | ||||
|   if drop_prob > 0.: | ||||
|     x = nn.functional.dropout(x, p=drop_prob) | ||||
|  | ||||
|   return x | ||||
|  | ||||
| class Cell(nn.Module): | ||||
|  | ||||
|   def __init__(self, genotype, C_prev_prev, C_prev, C, reduction, reduction_prev): | ||||
|     super(Cell, self).__init__() | ||||
|  | ||||
|     if reduction_prev: | ||||
|       self.preprocess0 = FactorizedReduce(C_prev_prev, C) | ||||
|     else: | ||||
|       self.preprocess0 = ReLUConvBN(C_prev_prev, C, 1, 1, 0, 1, True) | ||||
|     self.preprocess1 = ReLUConvBN(C_prev, C, 1, 1, 0, 1, True) | ||||
|      | ||||
|     if reduction: | ||||
|         op_names, indices = zip(*genotype.reduce) | ||||
|         concat = genotype.reduce_concat # 2,3,4,5 | ||||
|     else: | ||||
|         op_names, indices = zip(*genotype.normal) | ||||
|         concat = genotype.normal_concat # 2,3,4,5 | ||||
|     self._compile(C, op_names, indices, concat, reduction) | ||||
|  | ||||
|   def _compile(self, C, op_names, indices, concat, reduction): | ||||
|     assert len(op_names) == len(indices) | ||||
|     self._steps = len(op_names) // 2 # 4 | ||||
|     self._concat = concat # 2,3,4,5 | ||||
|     self.multiplier = len(concat) # 4 | ||||
|     self._ops = nn.ModuleList() | ||||
|  | ||||
|     for name, index in zip(op_names, indices): | ||||
|         stride = 2 if reduction and index < 2 else 1 | ||||
|         op = OPS[name](C, C, stride, True) | ||||
|         self._ops += [op] | ||||
|     self._indices = indices | ||||
|  | ||||
|   def forward(self, s0, s1, drop_prob): | ||||
|     s0 = self.preprocess0(s0) | ||||
|     s1 = self.preprocess1(s1) | ||||
|  | ||||
|     states = [s0, s1] | ||||
|     for i in range(self._steps): | ||||
|       h1 = states[self._indices[2*i]] | ||||
|       h2 = states[self._indices[2*i+1]] | ||||
|       op1 = self._ops[2*i] | ||||
|       op2 = self._ops[2*i+1] | ||||
|       h1 = op1(h1) | ||||
|       h2 = op2(h2) | ||||
|       if self.training and drop_prob > 0.: | ||||
|         if not isinstance(op1, Identity): | ||||
|           h1 = drop_path(h1, drop_prob) | ||||
|         if not isinstance(op2, Identity): | ||||
|           h2 = drop_path(h2, drop_prob) | ||||
|       s = h1 + h2 | ||||
|       states += [s] | ||||
|     return torch.cat([states[i] for i in self._concat], dim=1) | ||||
|  | ||||
| class Network(nn.Module): | ||||
|  | ||||
|     def __init__(self, C, num_classes, layers, genotype): | ||||
|         self.drop_path_prob = 0. | ||||
|         super(Network, self).__init__() | ||||
|          | ||||
|         self._layers = layers | ||||
|  | ||||
|         C_prev_prev, C_prev, C_curr = C, C, C | ||||
|          | ||||
|         self.cells = nn.ModuleList() | ||||
|         reduction_prev = False | ||||
|  | ||||
|         for i in range(layers): | ||||
|             if i in [layers // 3, 2 * layers // 3]: | ||||
|                 C_curr *= 2 | ||||
|                 reduction = True | ||||
|             else: | ||||
|                 reduction = False | ||||
|             cell = Cell(genotype, C_prev_prev, C_prev, C_curr, reduction, reduction_prev) | ||||
|             reduction_prev = reduction | ||||
|             self.cells += [cell] | ||||
|             C_prev_prev, C_prev = C_prev, cell.multiplier * C_curr | ||||
|  | ||||
|         self.global_pooling = nn.AdaptiveAvgPool2d(1) | ||||
|         self.classifier = nn.Linear(C_prev, num_classes) | ||||
|  | ||||
|     def forward(self, input): | ||||
|         s0 = s1 = input | ||||
|          | ||||
|         for i, cell in enumerate(self.cells): | ||||
|             s0, s1 = s1, cell(s0, s1, self.drop_path_prob) | ||||
|  | ||||
|         out = self.global_pooling(s1) | ||||
|         out = out.view(out.size(0), -1) | ||||
|         logits = self.classifier(out) | ||||
|         return out | ||||
|  | ||||
							
								
								
									
										147
									
								
								src/search_space/operations.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										147
									
								
								src/search_space/operations.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,147 @@ | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| OPS = { | ||||
|     'none': lambda C_in, C_out, stride, affine: Zero(C_in, C_out, stride), | ||||
|     'avg_pool_3x3': lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg', affine), | ||||
|     'max_pool_3x3': lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'max', affine), | ||||
|     'skip_connect': lambda C_in, C_out, stride, affine: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine), | ||||
|     'sep_conv_3x3': lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 3, stride, 1, affine), | ||||
|     'sep_conv_5x5': lambda C_in, C_out, stride, affine: SepConv(C_in, C_out, 5, stride, 2, affine), | ||||
|     'dil_conv_3x3': lambda C_in, C_out, stride, affine: DilConv(C_in, C_out, 3, stride, 2, 2, affine), | ||||
|     'dil_conv_5x5': lambda C_in, C_out, stride, affine: DilConv(C_in, C_out, 5, stride, 4, 2, affine), | ||||
| } | ||||
|  | ||||
|  | ||||
| class ReLUConvBN(nn.Module): | ||||
|  | ||||
|     def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine, track_running_stats=True): | ||||
|         super(ReLUConvBN, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), | ||||
|             nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class DilConv(nn.Module): | ||||
|  | ||||
|     def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation, affine=True, track_running_stats=True): | ||||
|         super(DilConv, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, | ||||
|                       groups=C_in, bias=False), | ||||
|             nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), | ||||
|             nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats), | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class SepConv(nn.Module): | ||||
|  | ||||
|     def __init__(self, C_in, C_out, kernel_size, stride, padding, affine=True, track_running_stats=True): | ||||
|         super(SepConv, self).__init__() | ||||
|         self.op = nn.Sequential( | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, groups=C_in, bias=False), | ||||
|             nn.Conv2d(C_in, C_in, kernel_size=1, padding=0, bias=False), | ||||
|             nn.BatchNorm2d(C_in, affine=affine, track_running_stats=track_running_stats), | ||||
|              | ||||
|             nn.ReLU(inplace=False), | ||||
|             nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=1, padding=padding, groups=C_in, bias=False), | ||||
|             nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), | ||||
|             nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats), | ||||
|         ) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return self.op(x) | ||||
|  | ||||
|  | ||||
| class Identity(nn.Module): | ||||
|  | ||||
|     def __init__(self): | ||||
|         super(Identity, self).__init__() | ||||
|  | ||||
|     def forward(self, x): | ||||
|         return x | ||||
|  | ||||
|  | ||||
| class FactorizedReduce(nn.Module): | ||||
|     def __init__(self, C_in, C_out, stride=2, affine=True, track_running_stats=True): | ||||
|         super(FactorizedReduce, self).__init__() | ||||
|         self.stride = stride | ||||
|         self.C_in   = C_in | ||||
|         self.C_out  = C_out | ||||
|         self.relu   = nn.ReLU(inplace=False) | ||||
|         if stride == 2: | ||||
|             C_outs = [C_out // 2, C_out - C_out // 2] | ||||
|             self.convs = nn.ModuleList() | ||||
|             for i in range(2): | ||||
|                 self.convs.append( nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False)) | ||||
|             self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) | ||||
|         elif stride == 1: | ||||
|             self.conv = nn.Conv2d(C_in, C_out, 1, stride=stride, padding=0, bias=False) | ||||
|         else: | ||||
|             raise ValueError('Invalid stride : {:}'.format(stride)) | ||||
|         self.bn = nn.BatchNorm2d(C_out, affine=affine, track_running_stats=track_running_stats) | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.stride == 2: | ||||
|             x = self.relu(x) | ||||
|             y = self.pad(x) | ||||
|             out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1) | ||||
|         else: | ||||
|             out = self.conv(x) | ||||
|         out = self.bn(out) | ||||
|         return out | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| class Zero(nn.Module): | ||||
|  | ||||
|     def __init__(self, C_in, C_out, stride): | ||||
|         super(Zero, self).__init__() | ||||
|         self.C_in   = C_in | ||||
|         self.C_out  = C_out | ||||
|         self.stride = stride | ||||
|         self.is_zero = True | ||||
|  | ||||
|     def forward(self, x): | ||||
|         if self.C_in == self.C_out: | ||||
|             if self.stride == 1: return x.mul(0.) | ||||
|             else               : return x[:,:,::self.stride,::self.stride].mul(0.) | ||||
|         else: | ||||
|             shape = list(x.shape) | ||||
|             shape[1] = self.C_out | ||||
|             zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) | ||||
|             return zeros | ||||
|  | ||||
|     def extra_repr(self): | ||||
|         return 'C_in={C_in}, C_out={C_out}, stride={stride}'.format(**self.__dict__) | ||||
|  | ||||
|  | ||||
| class POOLING(nn.Module): | ||||
|  | ||||
|     def __init__(self, C_in, C_out, stride, mode, affine=True, track_running_stats=True): | ||||
|         super(POOLING, self).__init__() | ||||
|         if C_in == C_out: | ||||
|             self.preprocess = None | ||||
|         else: | ||||
|             self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1, affine, track_running_stats) | ||||
|         if mode == 'avg'  : self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) | ||||
|         elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) | ||||
|         else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) | ||||
|  | ||||
|     def forward(self, inputs): | ||||
|         if self.preprocess: x = self.preprocess(inputs) | ||||
|         else              : x = inputs | ||||
|         return self.op(x) | ||||
|  | ||||
							
								
								
									
										0
									
								
								src/utils/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/utils/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										38
									
								
								src/utils/utilities.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										38
									
								
								src/utils/utilities.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,38 @@ | ||||
| import numpy as np | ||||
| import torch | ||||
| import torch.nn as nn | ||||
|  | ||||
| class Model(object): | ||||
|     def __init__(self): | ||||
|         self.arch = None | ||||
|         self.geno = None | ||||
|         self.score = None | ||||
|  | ||||
| def count_parameters(model): | ||||
|   return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e3 | ||||
|  | ||||
|  | ||||
| def network_weight_gaussian_init(net: nn.Module): | ||||
|     with torch.no_grad(): | ||||
|         for m in net.modules(): | ||||
|             if isinstance(m, nn.Conv2d): | ||||
|                 nn.init.normal_(m.weight) | ||||
|                 if hasattr(m, 'bias') and m.bias is not None: | ||||
|                     nn.init.zeros_(m.bias) | ||||
|             elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): | ||||
|                 nn.init.ones_(m.weight) | ||||
|                 nn.init.zeros_(m.bias) | ||||
|             elif isinstance(m, nn.Linear): | ||||
|                 nn.init.normal_(m.weight) | ||||
|                 if hasattr(m, 'bias') and m.bias is not None: | ||||
|                     nn.init.zeros_(m.bias) | ||||
|             else: | ||||
|                 continue | ||||
|  | ||||
|     return net | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     pass | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user