#!/bin/bash ############################################################################## # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # ############################################################################## # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # ############################################################################## # CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-shapes.sh 00000-05000 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 05001-10000 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 10001-14500 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 14501-18000 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 18001-19500 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 19501-23500 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 23501-27500 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 27501-30000 12 777 # bash ./scripts/NATS-Bench/train-shapes.sh 30001-32767 12 777 # # CUDA_VISIBLE_DEVICES=2 bash ./scripts/NATS-Bench/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 12 777 # SLURM_PROCID=1 SLURM_NTASKS=5 bash ./scripts/NATS-Bench/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 90 777 # [GCP] bash ./scripts/NATS-Bench/train-shapes.sh 00000-09999 90 777 # [UTS] bash ./scripts/NATS-Bench/train-shapes.sh 30000-32767 90 777 ############################################################################## echo script name: $0 echo $# arguments if [ "$#" -ne 3 ] ;then echo "Input illegal number of parameters " $# echo "Need 3 parameters for start-and-end, hyper-parameters-opt-file, and seeds" exit 1 fi if [ "$TORCH_HOME" = "" ]; then echo "Must set TORCH_HOME envoriment variable for data dir saving" exit 1 else echo "TORCH_HOME : $TORCH_HOME" fi srange=$1 opt=$2 all_seeds=$3 cpus=4 save_dir=./output/NATS-Bench-size/ OMP_NUM_THREADS=${cpus} python exps/NATS-Bench/main-sss.py \ --mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \ --datasets cifar10 cifar10 cifar100 ImageNet16-120 \ --splits 1 0 0 0 \ --xpaths $TORCH_HOME/cifar.python \ $TORCH_HOME/cifar.python \ $TORCH_HOME/cifar.python \ $TORCH_HOME/cifar.python/ImageNet16 \ --workers ${cpus} \ --seeds ${all_seeds}