xautodl/exps/experimental/vis-nats-bench-ws.py

186 lines
7.0 KiB
Python
Raw Permalink Normal View History

2020-07-20 08:19:16 +02:00
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
2020-07-30 15:07:11 +02:00
# Usage: python exps/experimental/vis-nats-bench-ws.py --search_space tss
# Usage: python exps/experimental/vis-nats-bench-ws.py --search_space sss
2020-07-20 08:19:16 +02:00
###############################################################
import os, gc, sys, time, torch, argparse
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
2021-03-17 10:25:58 +01:00
from copy import deepcopy
2020-07-20 08:19:16 +02:00
from pathlib import Path
import matplotlib
import seaborn as sns
2021-03-17 10:25:58 +01:00
matplotlib.use("agg")
2020-07-20 08:19:16 +02:00
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
2021-03-17 10:25:58 +01:00
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
2020-07-20 08:19:16 +02:00
from config_utils import dict2config, load_config
2020-07-30 15:07:11 +02:00
from nats_bench import create
2020-07-20 08:19:16 +02:00
from log_utils import time_string
2020-10-08 01:19:34 +02:00
# def fetch_data(root_dir='./output/search', search_space='tss', dataset=None, suffix='-WARMNone'):
2021-03-18 09:02:55 +01:00
def fetch_data(
root_dir="./output/search", search_space="tss", dataset=None, suffix="-WARM0.3"
):
2021-03-17 10:25:58 +01:00
ss_dir = "{:}-{:}".format(root_dir, search_space)
alg2name, alg2path = OrderedDict(), OrderedDict()
seeds = [777, 888, 999]
print("\n[fetch data] from {:} on {:}".format(search_space, dataset))
if search_space == "tss":
alg2name["GDAS"] = "gdas-affine0_BN0-None"
alg2name["RSPS"] = "random-affine0_BN0-None"
alg2name["DARTS (1st)"] = "darts-v1-affine0_BN0-None"
alg2name["DARTS (2nd)"] = "darts-v2-affine0_BN0-None"
alg2name["ENAS"] = "enas-affine0_BN0-None"
alg2name["SETN"] = "setn-affine0_BN0-None"
else:
# alg2name['TAS'] = 'tas-affine0_BN0{:}'.format(suffix)
# alg2name['FBNetV2'] = 'fbv2-affine0_BN0{:}'.format(suffix)
# alg2name['TuNAS'] = 'tunas-affine0_BN0{:}'.format(suffix)
2021-03-18 09:02:55 +01:00
alg2name["channel-wise interpolation"] = "tas-affine0_BN0-AWD0.001{:}".format(
suffix
)
alg2name[
"masking + Gumbel-Softmax"
] = "mask_gumbel-affine0_BN0-AWD0.001{:}".format(suffix)
2021-03-17 10:25:58 +01:00
alg2name["masking + sampling"] = "mask_rl-affine0_BN0-AWD0.0{:}".format(suffix)
for alg, name in alg2name.items():
alg2path[alg] = os.path.join(ss_dir, dataset, name, "seed-{:}-last-info.pth")
alg2data = OrderedDict()
for alg, path in alg2path.items():
alg2data[alg], ok_num = [], 0
for seed in seeds:
xpath = path.format(seed)
if os.path.isfile(xpath):
ok_num += 1
else:
print("This is an invalid path : {:}".format(xpath))
continue
data = torch.load(xpath, map_location=torch.device("cpu"))
data = torch.load(data["last_checkpoint"], map_location=torch.device("cpu"))
alg2data[alg].append(data["genotypes"])
print("This algorithm : {:} has {:} valid ckps.".format(alg, ok_num))
assert ok_num > 0, "Must have at least 1 valid ckps."
return alg2data
y_min_s = {
("cifar10", "tss"): 90,
("cifar10", "sss"): 92,
("cifar100", "tss"): 65,
("cifar100", "sss"): 65,
("ImageNet16-120", "tss"): 36,
("ImageNet16-120", "sss"): 40,
}
y_max_s = {
("cifar10", "tss"): 94.5,
("cifar10", "sss"): 93.3,
("cifar100", "tss"): 72,
("cifar100", "sss"): 70,
("ImageNet16-120", "tss"): 44,
("ImageNet16-120", "sss"): 46,
}
2021-03-18 09:02:55 +01:00
name2label = {
"cifar10": "CIFAR-10",
"cifar100": "CIFAR-100",
"ImageNet16-120": "ImageNet-16-120",
}
2021-03-17 10:25:58 +01:00
2020-07-25 06:50:30 +02:00
2020-07-20 08:19:16 +02:00
def visualize_curve(api, vis_save_dir, search_space):
2021-03-17 10:25:58 +01:00
vis_save_dir = vis_save_dir.resolve()
vis_save_dir.mkdir(parents=True, exist_ok=True)
dpi, width, height = 250, 5200, 1400
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 16, 16
def sub_plot_fn(ax, dataset):
alg2data = fetch_data(search_space=search_space, dataset=dataset)
alg2accuracies = OrderedDict()
epochs = 100
colors = ["b", "g", "c", "m", "y", "r"]
ax.set_xlim(0, epochs)
# ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
for idx, (alg, data) in enumerate(alg2data.items()):
print("plot alg : {:}".format(alg))
xs, accuracies = [], []
for iepoch in range(epochs + 1):
try:
structures, accs = [_[iepoch - 1] for _ in data], []
except:
2021-03-18 09:02:55 +01:00
raise ValueError(
"This alg {:} on {:} has invalid checkpoints.".format(
alg, dataset
)
)
2021-03-17 10:25:58 +01:00
for structure in structures:
info = api.get_more_info(
2021-03-18 09:02:55 +01:00
structure,
dataset=dataset,
hp=90 if api.search_space_name == "size" else 200,
is_random=False,
2021-03-17 10:25:58 +01:00
)
accs.append(info["test-accuracy"])
accuracies.append(sum(accs) / len(accs))
xs.append(iepoch)
alg2accuracies[alg] = accuracies
ax.plot(xs, accuracies, c=colors[idx], label="{:}".format(alg))
ax.set_xlabel("The searching epoch", fontsize=LabelSize)
2021-03-18 09:02:55 +01:00
ax.set_ylabel(
"Test accuracy on {:}".format(name2label[dataset]), fontsize=LabelSize
)
ax.set_title(
"Searching results on {:}".format(name2label[dataset]),
fontsize=LabelSize + 4,
)
2021-03-17 10:25:58 +01:00
ax.legend(loc=4, fontsize=LegendFontsize)
fig, axs = plt.subplots(1, 3, figsize=figsize)
datasets = ["cifar10", "cifar100", "ImageNet16-120"]
for dataset, ax in zip(datasets, axs):
sub_plot_fn(ax, dataset)
print("sub-plot {:} on {:} done.".format(dataset, search_space))
save_path = (vis_save_dir / "{:}-ws-curve.png".format(search_space)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
print("{:} save into {:}".format(time_string(), save_path))
plt.close("all")
if __name__ == "__main__":
2021-03-18 09:02:55 +01:00
parser = argparse.ArgumentParser(
description="NAS-Bench-X",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
2021-03-17 10:25:58 +01:00
parser.add_argument(
2021-03-18 09:02:55 +01:00
"--save_dir",
type=str,
default="output/vis-nas-bench/nas-algos",
help="Folder to save checkpoints and log.",
2021-03-17 10:25:58 +01:00
)
parser.add_argument(
2021-03-18 09:02:55 +01:00
"--search_space",
type=str,
default="tss",
choices=["tss", "sss"],
help="Choose the search space.",
2021-03-17 10:25:58 +01:00
)
args = parser.parse_args()
save_dir = Path(args.save_dir)
api = create(None, args.search_space, fast_mode=True, verbose=False)
visualize_curve(api, save_dir, args.search_space)