xautodl/exps/experimental/vis-bench-algos.py

112 lines
5.0 KiB
Python
Raw Normal View History

2020-07-13 12:04:52 +02:00
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
2020-07-13 13:35:13 +02:00
# Usage: python exps/experimental/vis-bench-algos.py #
2020-07-13 12:04:52 +02:00
###############################################################
import os, sys, time, torch, argparse
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
from copy import deepcopy
from pathlib import Path
import matplotlib
import seaborn as sns
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from nas_201_api import NASBench201API, NASBench301API
from log_utils import time_string
def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
ss_dir = '{:}-{:}'.format(root_dir, search_space)
alg2name, alg2path = OrderedDict(), OrderedDict()
alg2name['REA'] = 'R-EA-SS3'
alg2name['REINFORCE'] = 'REINFORCE-0.001'
2020-07-14 08:10:34 +02:00
alg2name['RANDOM'] = 'RANDOM'
2020-07-13 12:04:52 +02:00
for alg, name in alg2name.items():
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
2020-07-14 08:10:34 +02:00
assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg])
2020-07-13 12:04:52 +02:00
alg2data = OrderedDict()
for alg, path in alg2path.items():
data = torch.load(path)
for index, info in data.items():
info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])]
for j, arch in enumerate(info['all_archs']):
assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j)
alg2data[alg] = data
return alg2data
def query_performance(api, data, dataset, ticket):
results, is_301 = [], isinstance(api, NASBench301API)
for i, info in data.items():
time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket))
time_a, arch_a = time_w_arch[0]
time_b, arch_b = time_w_arch[1]
info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_301 else 200, is_random=False)
info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_301 else 200, is_random=False)
accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy']
interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b
results.append(interplate)
return sum(results) / len(results)
def visualize_curve(api, vis_save_dir, search_space, max_time):
vis_save_dir = vis_save_dir.resolve()
vis_save_dir.mkdir(parents=True, exist_ok=True)
2020-07-13 13:35:13 +02:00
dpi, width, height = 250, 5100, 1500
2020-07-13 12:04:52 +02:00
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 14, 14
def sub_plot_fn(ax, dataset):
alg2data = fetch_data(search_space=search_space, dataset=dataset)
alg2accuracies = OrderedDict()
2020-07-13 13:35:13 +02:00
total_tickets = 150
time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)]
2020-07-13 12:04:52 +02:00
colors = ['b', 'g', 'c', 'm', 'y']
for idx, (alg, data) in enumerate(alg2data.items()):
print('plot alg : {:}'.format(alg))
accuracies = []
for ticket in time_tickets:
accuracy = query_performance(api, data, dataset, ticket)
accuracies.append(accuracy)
alg2accuracies[alg] = accuracies
2020-07-13 13:35:13 +02:00
ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg))
ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize)
ax.set_ylabel('Test accuracy on {:}'.format(dataset), fontsize=LabelSize)
ax.set_title('Searching results on {:}'.format(dataset), fontsize=LabelSize+4)
2020-07-13 12:04:52 +02:00
ax.legend(loc=4, fontsize=LegendFontsize)
fig, axs = plt.subplots(1, 3, figsize=figsize)
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
for dataset, ax in zip(datasets, axs):
sub_plot_fn(ax, dataset)
print('sub-plot {:} on {:} done.'.format(dataset, search_space))
save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
print ('{:} save into {:}'.format(time_string(), save_path))
plt.close('all')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.')
parser.add_argument('--max_time', type=float, default=20000, help='The maximum time budget.')
args = parser.parse_args()
save_dir = Path(args.save_dir)
api201 = NASBench201API(verbose=False)
visualize_curve(api201, save_dir, 'tss', args.max_time)
api301 = NASBench301API(verbose=False)
visualize_curve(api301, save_dir, 'sss', args.max_time)