xautodl/exps/NATS-Bench/draw-fig8.py

233 lines
7.9 KiB
Python
Raw Normal View History

2020-12-01 15:25:23 +01:00
###############################################################
2021-01-25 14:48:14 +01:00
# NATS-Bench (arxiv.org/pdf/2009.00437.pdf), IEEE TPAMI 2021 #
2020-12-01 15:25:23 +01:00
# The code to draw Figure 6 in our paper. #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
###############################################################
# Usage: python exps/NATS-Bench/draw-fig8.py #
###############################################################
import os, gc, sys, time, torch, argparse
import numpy as np
from typing import List, Text, Dict, Any
from shutil import copyfile
from collections import defaultdict, OrderedDict
2021-03-17 10:25:58 +01:00
from copy import deepcopy
2020-12-01 15:25:23 +01:00
from pathlib import Path
import matplotlib
import seaborn as sns
2021-03-17 10:25:58 +01:00
matplotlib.use("agg")
2020-12-01 15:25:23 +01:00
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
from xautodl.config_utils import dict2config, load_config
from xautodl.log_utils import time_string
2020-12-01 15:25:23 +01:00
from nats_bench import create
2021-03-18 09:02:55 +01:00
plt.rcParams.update(
{"text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"]}
)
2020-12-01 15:25:23 +01:00
## for Palatino and other serif fonts use:
2021-03-17 10:25:58 +01:00
plt.rcParams.update(
{
"text.usetex": True,
"font.family": "serif",
"font.serif": ["Palatino"],
}
)
def fetch_data(root_dir="./output/search", search_space="tss", dataset=None):
ss_dir = "{:}-{:}".format(root_dir, search_space)
alg2all = OrderedDict()
# alg2name['REINFORCE'] = 'REINFORCE-0.01'
# alg2name['RANDOM'] = 'RANDOM'
# alg2name['BOHB'] = 'BOHB'
if search_space == "tss":
hp = "$\mathcal{H}^{1}$"
if dataset == "cifar10":
suffixes = ["-T1200000", "-T1200000-FULL"]
elif search_space == "sss":
hp = "$\mathcal{H}^{2}$"
if dataset == "cifar10":
suffixes = ["-T200000", "-T200000-FULL"]
else:
raise ValueError("Unkonwn search space: {:}".format(search_space))
alg2all[r"REA ($\mathcal{H}^{0}$)"] = dict(
2021-03-18 09:02:55 +01:00
path=os.path.join(ss_dir, dataset + suffixes[0], "R-EA-SS3", "results.pth"),
color="b",
linestyle="-",
2021-03-17 10:25:58 +01:00
)
alg2all[r"REA ({:})".format(hp)] = dict(
2021-03-18 09:02:55 +01:00
path=os.path.join(ss_dir, dataset + suffixes[1], "R-EA-SS3", "results.pth"),
color="b",
linestyle="--",
2021-03-17 10:25:58 +01:00
)
for alg, xdata in alg2all.items():
data = torch.load(xdata["path"])
for index, info in data.items():
2021-03-18 09:02:55 +01:00
info["time_w_arch"] = [
(x, y) for x, y in zip(info["all_total_times"], info["all_archs"])
]
2021-03-17 10:25:58 +01:00
for j, arch in enumerate(info["all_archs"]):
assert arch != -1, "invalid arch from {:} {:} {:} ({:}, {:})".format(
alg, search_space, dataset, index, j
)
xdata["data"] = data
return alg2all
2020-12-01 15:25:23 +01:00
def query_performance(api, data, dataset, ticket):
2021-03-17 10:25:58 +01:00
results, is_size_space = [], api.search_space_name == "size"
for i, info in data.items():
time_w_arch = sorted(info["time_w_arch"], key=lambda x: abs(x[0] - ticket))
time_a, arch_a = time_w_arch[0]
time_b, arch_b = time_w_arch[1]
2021-03-18 09:02:55 +01:00
info_a = api.get_more_info(
arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
info_b = api.get_more_info(
arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False
)
2021-03-17 10:25:58 +01:00
accuracy_a, accuracy_b = info_a["test-accuracy"], info_b["test-accuracy"]
2021-03-18 09:02:55 +01:00
interplate = (time_b - ticket) / (time_b - time_a) * accuracy_a + (
ticket - time_a
) / (time_b - time_a) * accuracy_b
2021-03-17 10:25:58 +01:00
results.append(interplate)
# return sum(results) / len(results)
return np.mean(results), np.std(results)
y_min_s = {
("cifar10", "tss"): 91,
("cifar10", "sss"): 91,
("cifar100", "tss"): 65,
("cifar100", "sss"): 65,
("ImageNet16-120", "tss"): 36,
("ImageNet16-120", "sss"): 40,
}
y_max_s = {
("cifar10", "tss"): 94.5,
("cifar10", "sss"): 93.5,
("cifar100", "tss"): 72.5,
("cifar100", "sss"): 70.5,
("ImageNet16-120", "tss"): 46,
("ImageNet16-120", "sss"): 46,
}
x_axis_s = {
("cifar10", "tss"): 1200000,
("cifar10", "sss"): 200000,
("cifar100", "tss"): 400,
("cifar100", "sss"): 400,
("ImageNet16-120", "tss"): 1200,
("ImageNet16-120", "sss"): 600,
}
2021-03-18 09:02:55 +01:00
name2label = {
"cifar10": "CIFAR-10",
"cifar100": "CIFAR-100",
"ImageNet16-120": "ImageNet-16-120",
}
2021-03-17 10:25:58 +01:00
spaces2latex = {
"tss": r"$\mathcal{S}_{t}$",
"sss": r"$\mathcal{S}_{s}$",
}
2020-12-01 15:25:23 +01:00
# FuncFormatter can be used as a decorator
@ticker.FuncFormatter
def major_formatter(x, pos):
2021-03-17 10:25:58 +01:00
if x == 0:
return "0"
else:
return "{:.2f}e5".format(x / 1e5)
2020-12-01 15:25:23 +01:00
def visualize_curve(api_dict, vis_save_dir):
2021-03-17 10:25:58 +01:00
vis_save_dir = vis_save_dir.resolve()
vis_save_dir.mkdir(parents=True, exist_ok=True)
dpi, width, height = 250, 5000, 2000
figsize = width / float(dpi), height / float(dpi)
LabelSize, LegendFontsize = 28, 28
def sub_plot_fn(ax, search_space, dataset):
max_time = x_axis_s[(dataset, search_space)]
alg2data = fetch_data(search_space=search_space, dataset=dataset)
alg2accuracies = OrderedDict()
total_tickets = 200
2021-03-18 09:02:55 +01:00
time_tickets = [
float(i) / total_tickets * int(max_time) for i in range(total_tickets)
]
2021-03-17 10:25:58 +01:00
ax.set_xlim(0, x_axis_s[(dataset, search_space)])
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
for tick in ax.get_xticklabels():
tick.set_rotation(25)
tick.set_fontsize(LabelSize - 6)
for tick in ax.get_yticklabels():
tick.set_fontsize(LabelSize - 6)
ax.xaxis.set_major_formatter(major_formatter)
for idx, (alg, xdata) in enumerate(alg2data.items()):
accuracies = []
for ticket in time_tickets:
# import pdb; pdb.set_trace()
2021-03-18 09:02:55 +01:00
accuracy, accuracy_std = query_performance(
api_dict[search_space], xdata["data"], dataset, ticket
)
2021-03-17 10:25:58 +01:00
accuracies.append(accuracy)
# print('{:} plot alg : {:10s}, final accuracy = {:.2f}$\pm${:.2f}'.format(time_string(), alg, accuracy, accuracy_std))
2021-03-18 09:02:55 +01:00
print(
"{:} plot alg : {:10s} on {:}".format(time_string(), alg, search_space)
)
2021-03-17 10:25:58 +01:00
alg2accuracies[alg] = accuracies
2021-03-18 09:02:55 +01:00
ax.plot(
time_tickets,
accuracies,
c=xdata["color"],
linestyle=xdata["linestyle"],
label="{:}".format(alg),
)
2021-03-17 10:25:58 +01:00
ax.set_xlabel("Estimated wall-clock time", fontsize=LabelSize)
ax.set_ylabel("Test accuracy", fontsize=LabelSize)
ax.set_title(
2021-03-18 09:02:55 +01:00
r"Results on {:} over {:}".format(
name2label[dataset], spaces2latex[search_space]
),
fontsize=LabelSize,
2021-03-17 10:25:58 +01:00
)
ax.legend(loc=4, fontsize=LegendFontsize)
fig, axs = plt.subplots(1, 2, figsize=figsize)
sub_plot_fn(axs[0], "tss", "cifar10")
sub_plot_fn(axs[1], "sss", "cifar10")
save_path = (vis_save_dir / "full-curve.png").resolve()
fig.savefig(save_path, dpi=dpi, bbox_inches="tight", format="png")
print("{:} save into {:}".format(time_string(), save_path))
plt.close("all")
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--save_dir",
type=str,
default="output/vis-nas-bench/nas-algos-vs-h",
help="Folder to save checkpoints and log.",
)
args = parser.parse_args()
save_dir = Path(args.save_dir)
api_tss = create(None, "tss", fast_mode=True, verbose=False)
api_sss = create(None, "sss", fast_mode=True, verbose=False)
visualize_curve(dict(tss=api_tss, sss=api_sss), save_dir)