2020-03-11 08:44:39 +01:00
|
|
|
import sys, time, random, argparse
|
|
|
|
from copy import deepcopy
|
|
|
|
import torchvision.models as models
|
|
|
|
from pathlib import Path
|
2021-03-17 10:25:58 +01:00
|
|
|
|
2021-05-24 07:06:10 +02:00
|
|
|
from xautodl.utils import weight_watcher
|
2020-03-11 08:44:39 +01:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
2021-03-17 10:25:58 +01:00
|
|
|
# model = models.vgg19_bn(pretrained=True)
|
|
|
|
# _, summary = weight_watcher.analyze(model, alphas=False)
|
|
|
|
# for key, value in summary.items():
|
|
|
|
# print('{:10s} : {:}'.format(key, value))
|
2020-03-13 22:00:54 +01:00
|
|
|
|
2021-03-17 10:25:58 +01:00
|
|
|
_, summary = weight_watcher.analyze(models.vgg13(pretrained=True), alphas=False)
|
|
|
|
print("vgg-13 : {:}".format(summary["lognorm"]))
|
|
|
|
_, summary = weight_watcher.analyze(models.vgg13_bn(pretrained=True), alphas=False)
|
|
|
|
print("vgg-13-BN : {:}".format(summary["lognorm"]))
|
|
|
|
_, summary = weight_watcher.analyze(models.vgg16(pretrained=True), alphas=False)
|
|
|
|
print("vgg-16 : {:}".format(summary["lognorm"]))
|
|
|
|
_, summary = weight_watcher.analyze(models.vgg16_bn(pretrained=True), alphas=False)
|
|
|
|
print("vgg-16-BN : {:}".format(summary["lognorm"]))
|
|
|
|
_, summary = weight_watcher.analyze(models.vgg19(pretrained=True), alphas=False)
|
|
|
|
print("vgg-19 : {:}".format(summary["lognorm"]))
|
|
|
|
_, summary = weight_watcher.analyze(models.vgg19_bn(pretrained=True), alphas=False)
|
|
|
|
print("vgg-19-BN : {:}".format(summary["lognorm"]))
|
2020-03-11 08:44:39 +01:00
|
|
|
|
|
|
|
|
2021-03-17 10:25:58 +01:00
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|