xautodl/exps/algos/ENAS.py

355 lines
18 KiB
Python
Raw Normal View History

2019-11-08 15:36:31 +01:00
import os, sys, time, glob, random, argparse
import numpy as np
from copy import deepcopy
import torch
import torch.nn as nn
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import load_config, dict2config, configure2str
from datasets import get_datasets, SearchDataset
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
from utils import get_model_infos, obtain_accuracy
from log_utils import AverageMeter, time_string, convert_secs2time
from models import get_cell_based_tiny_net, get_search_spaces
def train_shared_cnn(xloader, shared_cnn, controller, criterion, scheduler, optimizer, epoch_str, print_freq, logger):
data_time, batch_time = AverageMeter(), AverageMeter()
losses, top1s, top5s, xend = AverageMeter(), AverageMeter(), AverageMeter(), time.time()
shared_cnn.train()
controller.eval()
for step, (inputs, targets) in enumerate(xloader):
scheduler.update(None, 1.0 * step / len(xloader))
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
with torch.no_grad():
_, _, sampled_arch = controller()
optimizer.zero_grad()
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
loss = criterion(logits, targets)
loss.backward()
torch.nn.utils.clip_grad_norm_(shared_cnn.parameters(), 5)
optimizer.step()
# record
prec1, prec5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1s.update (prec1.item(), inputs.size(0))
top5s.update (prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if step % print_freq == 0 or step + 1 == len(xloader):
Sstr = '*Train-Shared-CNN* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(xloader))
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})]'.format(loss=losses, top1=top1s, top5=top5s)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr)
return losses.avg, top1s.avg, top5s.avg
def train_controller(xloader, shared_cnn, controller, criterion, optimizer, config, epoch_str, print_freq, logger):
# config. (containing some necessary arg)
# baseline: The baseline score (i.e. average val_acc) from the previous epoch
data_time, batch_time = AverageMeter(), AverageMeter()
2019-11-09 06:50:13 +01:00
GradnormMeter, LossMeter, ValAccMeter, EntropyMeter, BaselineMeter, RewardMeter, xend = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), time.time()
2019-11-08 15:36:31 +01:00
shared_cnn.eval()
controller.train()
controller.zero_grad()
#for step, (inputs, targets) in enumerate(xloader):
loader_iter = iter(xloader)
for step in range(config.ctl_train_steps * config.ctl_num_aggre):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
targets = targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - xend)
log_prob, entropy, sampled_arch = controller()
with torch.no_grad():
shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.data, targets.data, topk=(1, 5))
val_top1 = val_top1.view(-1) / 100
reward = val_top1 + config.ctl_entropy_w * entropy
if config.baseline is None:
baseline = val_top1
else:
baseline = config.baseline - (1 - config.ctl_bl_dec) * (config.baseline - reward)
loss = -1 * log_prob * (reward - baseline)
# account
RewardMeter.update(reward.item())
BaselineMeter.update(baseline.item())
2019-11-09 06:50:13 +01:00
ValAccMeter.update(val_top1.item()*100)
2019-11-08 15:36:31 +01:00
LossMeter.update(loss.item())
2019-11-09 06:50:13 +01:00
EntropyMeter.update(entropy.item())
2019-11-08 15:36:31 +01:00
# Average gradient over controller_num_aggregate samples
loss = loss / config.ctl_num_aggre
loss.backward(retain_graph=True)
# measure elapsed time
batch_time.update(time.time() - xend)
xend = time.time()
if (step+1) % config.ctl_num_aggre == 0:
grad_norm = torch.nn.utils.clip_grad_norm_(controller.parameters(), 5.0)
GradnormMeter.update(grad_norm)
optimizer.step()
controller.zero_grad()
if step % print_freq == 0:
Sstr = '*Train-Controller* ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, config.ctl_train_steps * config.ctl_num_aggre)
Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time)
Wstr = '[Loss {loss.val:.3f} ({loss.avg:.3f}) Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Reward {reward.val:.2f} ({reward.avg:.2f})] Baseline {basel.val:.2f} ({basel.avg:.2f})'.format(loss=LossMeter, top1=ValAccMeter, reward=RewardMeter, basel=BaselineMeter)
2019-11-09 06:50:13 +01:00
Estr = 'Entropy={:.4f} ({:.4f})'.format(EntropyMeter.val, EntropyMeter.avg)
logger.log(Sstr + ' ' + Tstr + ' ' + Wstr + ' ' + Estr)
2019-11-08 15:36:31 +01:00
return LossMeter.avg, ValAccMeter.avg, BaselineMeter.avg, RewardMeter.avg, baseline.item()
def get_best_arch(controller, shared_cnn, xloader, n_samples=10):
with torch.no_grad():
controller.eval()
shared_cnn.eval()
archs, valid_accs = [], []
loader_iter = iter(xloader)
for i in range(n_samples):
try:
inputs, targets = next(loader_iter)
except:
loader_iter = iter(xloader)
inputs, targets = next(loader_iter)
_, _, sampled_arch = controller()
arch = shared_cnn.module.update_arch(sampled_arch)
_, logits = shared_cnn(inputs)
val_top1, val_top5 = obtain_accuracy(logits.cpu().data, targets.data, topk=(1, 5))
archs.append( arch )
valid_accs.append( val_top1.item() )
best_idx = np.argmax(valid_accs)
best_arch, best_valid_acc = archs[best_idx], valid_accs[best_idx]
return best_arch, best_valid_acc
def valid_func(xloader, network, criterion):
data_time, batch_time = AverageMeter(), AverageMeter()
arch_losses, arch_top1, arch_top5 = AverageMeter(), AverageMeter(), AverageMeter()
network.eval()
end = time.time()
with torch.no_grad():
for step, (arch_inputs, arch_targets) in enumerate(xloader):
arch_targets = arch_targets.cuda(non_blocking=True)
# measure data loading time
data_time.update(time.time() - end)
# prediction
_, logits = network(arch_inputs)
arch_loss = criterion(logits, arch_targets)
# record
arch_prec1, arch_prec5 = obtain_accuracy(logits.data, arch_targets.data, topk=(1, 5))
arch_losses.update(arch_loss.item(), arch_inputs.size(0))
arch_top1.update (arch_prec1.item(), arch_inputs.size(0))
arch_top5.update (arch_prec5.item(), arch_inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
return arch_losses.avg, arch_top1.avg, arch_top5.avg
def main(xargs):
assert torch.cuda.is_available(), 'CUDA is not available.'
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
torch.set_num_threads( xargs.workers )
prepare_seed(xargs.rand_seed)
logger = prepare_logger(args)
train_data, test_data, xshape, class_num = get_datasets(xargs.dataset, xargs.data_path, -1)
if xargs.dataset == 'cifar10' or xargs.dataset == 'cifar100':
split_Fpath = 'configs/nas-benchmark/cifar-split.txt'
cifar_split = load_config(split_Fpath, None, None)
train_split, valid_split = cifar_split.train, cifar_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
elif xargs.dataset.startswith('ImageNet16'):
split_Fpath = 'configs/nas-benchmark/{:}-split.txt'.format(xargs.dataset)
imagenet16_split = load_config(split_Fpath, None, None)
train_split, valid_split = imagenet16_split.train, imagenet16_split.valid
logger.log('Load split file from {:}'.format(split_Fpath))
else:
raise ValueError('invalid dataset : {:}'.format(xargs.dataset))
logger.log('use config from : {:}'.format(xargs.config_path))
config = load_config(xargs.config_path, {'class_num': class_num, 'xshape': xshape}, logger)
logger.log('config: {:}'.format(config))
# To split data
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = test_data.transform
valid_data = train_data_v2
# data loader
train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(train_split), num_workers=xargs.workers, pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(valid_split), num_workers=xargs.workers, pin_memory=True)
logger.log('||||||| {:10s} ||||||| Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(xargs.dataset, len(train_loader), len(valid_loader), config.batch_size))
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'ENAS', 'C': xargs.channel, 'N': xargs.num_cells,
'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'space' : search_space}, None)
shared_cnn = get_cell_based_tiny_net(model_config)
controller = shared_cnn.create_controller()
w_optimizer, w_scheduler, criterion = get_optim_scheduler(shared_cnn.parameters(), config)
a_optimizer = torch.optim.Adam(controller.parameters(), lr=config.controller_lr, betas=config.controller_betas, eps=config.controller_eps)
logger.log('w-optimizer : {:}'.format(w_optimizer))
logger.log('a-optimizer : {:}'.format(a_optimizer))
logger.log('w-scheduler : {:}'.format(w_scheduler))
logger.log('criterion : {:}'.format(criterion))
#flop, param = get_model_infos(shared_cnn, xshape)
#logger.log('{:}'.format(shared_cnn))
#logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
shared_cnn, controller, criterion = torch.nn.DataParallel(shared_cnn).cuda(), controller.cuda(), criterion.cuda()
last_info, model_base_path, model_best_path = logger.path('info'), logger.path('model'), logger.path('best')
if last_info.exists(): # automatically resume from previous checkpoint
logger.log("=> loading checkpoint of the last-info '{:}' start".format(last_info))
last_info = torch.load(last_info)
start_epoch = last_info['epoch']
checkpoint = torch.load(last_info['last_checkpoint'])
genotypes = checkpoint['genotypes']
baseline = checkpoint['baseline']
valid_accuracies = checkpoint['valid_accuracies']
shared_cnn.load_state_dict( checkpoint['shared_cnn'] )
controller.load_state_dict( checkpoint['controller'] )
w_scheduler.load_state_dict ( checkpoint['w_scheduler'] )
w_optimizer.load_state_dict ( checkpoint['w_optimizer'] )
a_optimizer.load_state_dict ( checkpoint['a_optimizer'] )
logger.log("=> loading checkpoint of the last-info '{:}' start with {:}-th epoch.".format(last_info, start_epoch))
else:
logger.log("=> do not find the last-info file : {:}".format(last_info))
start_epoch, valid_accuracies, genotypes, baseline = 0, {'best': -1}, {}, None
# start training
start_time, epoch_time, total_epoch = time.time(), AverageMeter(), config.epochs + config.warmup
for epoch in range(start_epoch, total_epoch):
w_scheduler.update(epoch, 0.0)
need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.val * (total_epoch-epoch), True) )
epoch_str = '{:03d}-{:03d}'.format(epoch, total_epoch)
2019-11-09 06:50:13 +01:00
logger.log('\n[Search the {:}-th epoch] {:}, LR={:}, baseline={:}'.format(epoch_str, need_time, min(w_scheduler.get_lr()), baseline))
2019-11-08 15:36:31 +01:00
cnn_loss, cnn_top1, cnn_top5 = train_shared_cnn(train_loader, shared_cnn, controller, criterion, w_scheduler, w_optimizer, epoch_str, xargs.print_freq, logger)
logger.log('[{:}] shared-cnn : loss={:.2f}, accuracy@1={:.2f}%, accuracy@5={:.2f}%'.format(epoch_str, cnn_loss, cnn_top1, cnn_top5))
ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline \
= train_controller(valid_loader, shared_cnn, controller, criterion, a_optimizer, \
dict2config({'baseline': baseline,
'ctl_train_steps': xargs.controller_train_steps, 'ctl_num_aggre': xargs.controller_num_aggregate,
'ctl_entropy_w': xargs.controller_entropy_weight,
'ctl_bl_dec' : xargs.controller_bl_dec}, None), \
epoch_str, xargs.print_freq, logger)
logger.log('[{:}] controller : loss={:.2f}, accuracy={:.2f}%, baseline={:.2f}, reward={:.2f}, current-baseline={:.4f}'.format(epoch_str, ctl_loss, ctl_acc, ctl_baseline, ctl_reward, baseline))
best_arch, _ = get_best_arch(controller, shared_cnn, valid_loader)
shared_cnn.module.update_arch(best_arch)
2019-11-09 06:50:13 +01:00
_, best_valid_acc, _ = valid_func(valid_loader, shared_cnn, criterion)
2019-11-08 15:36:31 +01:00
genotypes[epoch] = best_arch
# check the best accuracy
valid_accuracies[epoch] = best_valid_acc
if best_valid_acc > valid_accuracies['best']:
valid_accuracies['best'] = best_valid_acc
genotypes['best'] = best_arch
find_best = True
else: find_best = False
logger.log('<<<--->>> The {:}-th epoch : {:}'.format(epoch_str, genotypes[epoch]))
# save checkpoint
save_path = save_checkpoint({'epoch' : epoch + 1,
'args' : deepcopy(xargs),
'baseline' : baseline,
'shared_cnn' : shared_cnn.state_dict(),
'controller' : controller.state_dict(),
'w_optimizer' : w_optimizer.state_dict(),
'a_optimizer' : a_optimizer.state_dict(),
'w_scheduler' : w_scheduler.state_dict(),
'genotypes' : genotypes,
'valid_accuracies' : valid_accuracies},
model_base_path, logger)
last_info = save_checkpoint({
'epoch': epoch + 1,
'args' : deepcopy(args),
'last_checkpoint': save_path,
}, logger.path('info'), logger)
if find_best:
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, best_valid_acc))
copy_checkpoint(model_base_path, model_best_path, logger)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
logger.log('\n' + '-'*100)
2019-11-09 06:50:13 +01:00
logger.log('During searching, the best architecture is {:}'.format(genotypes['best']))
logger.log('Its accuracy is {:.2f}%'.format(valid_accuracies['best']))
logger.log('Randomly select {:} architectures and select the best.'.format(xargs.controller_num_samples))
final_arch, _ = get_best_arch(controller, shared_cnn, valid_loader, xargs.controller_num_samples)
shared_cnn.module.update_arch(final_arch)
final_loss, final_top1, final_top5 = valid_func(valid_loader, shared_cnn, criterion)
logger.log('The Selected Final Architecture : {:}'.format(final_arch))
logger.log('Loss={:.3f}, Accuracy@1={:.2f}%, Accuracy@5={:.2f}%'.format(final_loss, final_top1, final_top5))
2019-11-08 15:36:31 +01:00
# check the performance from the architecture dataset
#if xargs.arch_nas_dataset is None or not os.path.isfile(xargs.arch_nas_dataset):
# logger.log('Can not find the architecture dataset : {:}.'.format(xargs.arch_nas_dataset))
#else:
# nas_bench = NASBenchmarkAPI(xargs.arch_nas_dataset)
# geno = genotypes[total_epoch-1]
# logger.log('The last model is {:}'.format(geno))
# info = nas_bench.query_by_arch( geno )
# if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
# else : logger.log('{:}'.format(info))
# logger.log('-'*100)
# geno = genotypes['best']
# logger.log('The best model is {:}'.format(geno))
# info = nas_bench.query_by_arch( geno )
# if info is None: logger.log('Did not find this architecture : {:}.'.format(geno))
# else : logger.log('{:}'.format(info))
logger.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser("ENAS")
parser.add_argument('--data_path', type=str, help='Path to dataset')
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
# channels and number-of-cells
parser.add_argument('--search_space_name', type=str, help='The search space name.')
parser.add_argument('--max_nodes', type=int, help='The maximum number of nodes.')
parser.add_argument('--channel', type=int, help='The number of channels.')
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
parser.add_argument('--config_path', type=str, help='The config file to train ENAS.')
parser.add_argument('--controller_train_steps', type=int, help='.')
parser.add_argument('--controller_num_aggregate', type=int, help='.')
parser.add_argument('--controller_entropy_weight', type=float, help='The weight for the entropy of the controller.')
parser.add_argument('--controller_bl_dec' , type=float, help='.')
parser.add_argument('--controller_num_samples' , type=int, help='.')
# log
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
parser.add_argument('--save_dir', type=str, help='Folder to save checkpoints and log.')
parser.add_argument('--arch_nas_dataset', type=str, help='The path to load the architecture dataset (nas-benchmark).')
parser.add_argument('--print_freq', type=int, help='print frequency (default: 200)')
parser.add_argument('--rand_seed', type=int, help='manual seed')
args = parser.parse_args()
if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
main(args)