27 lines
1.1 KiB
Python
27 lines
1.1 KiB
Python
|
#####################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
|
||
|
#####################################################
|
||
|
#
|
||
|
import sys, time, torch, random, argparse
|
||
|
from PIL import ImageFile
|
||
|
ImageFile.LOAD_TRUNCATED_IMAGES = True
|
||
|
from copy import deepcopy
|
||
|
from pathlib import Path
|
||
|
|
||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||
|
from utils import get_model_infos
|
||
|
|
||
|
torch.hub.list('zhanghang1989/ResNeSt', force_reload=True)
|
||
|
|
||
|
for model_name, xshape in [('resnest50', (1,3,224,224)),
|
||
|
('resnest101', (1,3,256,256)),
|
||
|
('resnest200', (1,3,320,320)),
|
||
|
('resnest269', (1,3,416,416))]:
|
||
|
# net = torch.hub.load('zhanghang1989/ResNeSt', model_name, pretrained=True)
|
||
|
net = torch.hub.load('zhanghang1989/ResNeSt', model_name, pretrained=False)
|
||
|
print('Model : {:}, input shape : {:}'.format(model_name, xshape))
|
||
|
flops, param = get_model_infos(net, xshape)
|
||
|
print('flops : {:.3f}M'.format(flops))
|
||
|
print('params : {:.3f}M'.format(param))
|