267 lines
13 KiB
Python
267 lines
13 KiB
Python
|
##################################################
|
||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 #
|
||
|
##################################################################
|
||
|
# Regularized Evolution for Image Classifier Architecture Search #
|
||
|
##################################################################
|
||
|
# python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||
|
# python ./exps/algos-v2/R_EA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||
|
# python ./exps/algos-v2/R_EA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||
|
# python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1
|
||
|
#
|
||
|
#
|
||
|
#
|
||
|
import os, sys, time, glob, random, argparse
|
||
|
import numpy as np, collections
|
||
|
from copy import deepcopy
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from pathlib import Path
|
||
|
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||
|
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||
|
from config_utils import load_config, dict2config, configure2str
|
||
|
from datasets import get_datasets, SearchDataset
|
||
|
from procedures import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler
|
||
|
from utils import get_model_infos, obtain_accuracy
|
||
|
from log_utils import AverageMeter, time_string, convert_secs2time
|
||
|
from nas_201_api import NASBench201API, NASBench301API
|
||
|
from models import CellStructure, get_search_spaces
|
||
|
|
||
|
|
||
|
class Model(object):
|
||
|
|
||
|
def __init__(self):
|
||
|
self.arch = None
|
||
|
self.accuracy = None
|
||
|
|
||
|
def __str__(self):
|
||
|
"""Prints a readable version of this bitstring."""
|
||
|
return '{:}'.format(self.arch)
|
||
|
|
||
|
|
||
|
# This function is to mimic the training and evaluatinig procedure for a single architecture `arch`.
|
||
|
# The time_cost is calculated as the total training time for a few (e.g., 12 epochs) plus the evaluation time for one epoch.
|
||
|
# For use_012_epoch_training = True, the architecture is trained for 12 epochs, with LR being decaded from 0.1 to 0.
|
||
|
# In this case, the LR schedular is converged.
|
||
|
# For use_012_epoch_training = False, the architecture is planed to be trained for 200 epochs, but we early stop its procedure.
|
||
|
#
|
||
|
def train_and_eval(arch, nas_bench, extra_info, dataname='cifar10-valid', use_012_epoch_training=True):
|
||
|
|
||
|
if use_012_epoch_training and nas_bench is not None:
|
||
|
arch_index = nas_bench.query_index_by_arch( arch )
|
||
|
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
|
||
|
valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time']
|
||
|
#_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs
|
||
|
elif not use_012_epoch_training and nas_bench is not None:
|
||
|
# Please contact me if you want to use the following logic, because it has some potential issues.
|
||
|
# Please use `use_012_epoch_training=False` for cifar10 only.
|
||
|
# It did return values for cifar100 and ImageNet16-120, but it has some potential issues. (Please email me for more details)
|
||
|
arch_index, nepoch = nas_bench.query_index_by_arch( arch ), 25
|
||
|
assert arch_index >= 0, 'can not find this arch : {:}'.format(arch)
|
||
|
xoinfo = nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch=None, hp='12')
|
||
|
xocost = nas_bench.get_cost_info(arch_index, 'cifar10-valid', hp='200')
|
||
|
info = nas_bench.get_more_info(arch_index, dataname, nepoch, hp='200', is_random=True) # use the validation accuracy after 25 training epochs, which is used in our ICLR submission (not the camera ready).
|
||
|
cost = nas_bench.get_cost_info(arch_index, dataname, hp='200')
|
||
|
# The following codes are used to estimate the time cost.
|
||
|
# When we build NAS-Bench-201, architectures are trained on different machines and we can not use that time record.
|
||
|
# When we create checkpoints for converged_LR, we run all experiments on 1080Ti, and thus the time for each architecture can be fairly compared.
|
||
|
nums = {'ImageNet16-120-train': 151700, 'ImageNet16-120-valid': 3000,
|
||
|
'cifar10-valid-train' : 25000, 'cifar10-valid-valid' : 25000,
|
||
|
'cifar100-train' : 50000, 'cifar100-valid' : 5000}
|
||
|
estimated_train_cost = xoinfo['train-per-time'] / nums['cifar10-valid-train'] * nums['{:}-train'.format(dataname)] / xocost['latency'] * cost['latency'] * nepoch
|
||
|
estimated_valid_cost = xoinfo['valid-per-time'] / nums['cifar10-valid-valid'] * nums['{:}-valid'.format(dataname)] / xocost['latency'] * cost['latency']
|
||
|
try:
|
||
|
valid_acc, time_cost = info['valid-accuracy'], estimated_train_cost + estimated_valid_cost
|
||
|
except:
|
||
|
valid_acc, time_cost = info['valtest-accuracy'], estimated_train_cost + estimated_valid_cost
|
||
|
else:
|
||
|
# train a model from scratch.
|
||
|
raise ValueError('NOT IMPLEMENT YET')
|
||
|
return valid_acc, time_cost
|
||
|
|
||
|
|
||
|
def random_topology_func(op_names, max_nodes=4):
|
||
|
# Return a random architecture
|
||
|
def random_architecture():
|
||
|
genotypes = []
|
||
|
for i in range(1, max_nodes):
|
||
|
xlist = []
|
||
|
for j in range(i):
|
||
|
node_str = '{:}<-{:}'.format(i, j)
|
||
|
op_name = random.choice( op_names )
|
||
|
xlist.append((op_name, j))
|
||
|
genotypes.append( tuple(xlist) )
|
||
|
return CellStructure( genotypes )
|
||
|
return random_architecture
|
||
|
|
||
|
|
||
|
def random_size_func(info):
|
||
|
# Return a random architecture
|
||
|
def random_architecture():
|
||
|
channels = []
|
||
|
for i in range(info['numbers']):
|
||
|
channels.append(
|
||
|
str(random.choice(info['candidates'])))
|
||
|
return ':'.join(channels)
|
||
|
return random_architecture
|
||
|
|
||
|
|
||
|
def mutate_topology_func(op_names):
|
||
|
"""Computes the architecture for a child of the given parent architecture.
|
||
|
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
|
||
|
"""
|
||
|
def mutate_topology_func(parent_arch):
|
||
|
child_arch = deepcopy( parent_arch )
|
||
|
node_id = random.randint(0, len(child_arch.nodes)-1)
|
||
|
node_info = list( child_arch.nodes[node_id] )
|
||
|
snode_id = random.randint(0, len(node_info)-1)
|
||
|
xop = random.choice( op_names )
|
||
|
while xop == node_info[snode_id][0]:
|
||
|
xop = random.choice( op_names )
|
||
|
node_info[snode_id] = (xop, node_info[snode_id][1])
|
||
|
child_arch.nodes[node_id] = tuple( node_info )
|
||
|
return child_arch
|
||
|
return mutate_topology_func
|
||
|
|
||
|
|
||
|
def mutate_size_func(info):
|
||
|
"""Computes the architecture for a child of the given parent architecture.
|
||
|
The parent architecture is cloned and mutated to produce the child architecture. The child architecture is mutated by randomly switch one operation to another.
|
||
|
"""
|
||
|
def mutate_size_func(parent_arch):
|
||
|
child_arch = deepcopy(parent_arch)
|
||
|
child_arch = child_arch.split(':')
|
||
|
index = random.randint(0, len(child_arch)-1)
|
||
|
child_arch[index] = str(random.choice(info['candidates']))
|
||
|
return ':'.join(child_arch)
|
||
|
return mutate_size_func
|
||
|
|
||
|
|
||
|
def regularized_evolution(cycles, population_size, sample_size, time_budget, random_arch, mutate_arch, api, dataset):
|
||
|
"""Algorithm for regularized evolution (i.e. aging evolution).
|
||
|
|
||
|
Follows "Algorithm 1" in Real et al. "Regularized Evolution for Image
|
||
|
Classifier Architecture Search".
|
||
|
|
||
|
Args:
|
||
|
cycles: the number of cycles the algorithm should run for.
|
||
|
population_size: the number of individuals to keep in the population.
|
||
|
sample_size: the number of individuals that should participate in each tournament.
|
||
|
time_budget: the upper bound of searching cost
|
||
|
|
||
|
Returns:
|
||
|
history: a list of `Model` instances, representing all the models computed
|
||
|
during the evolution experiment.
|
||
|
"""
|
||
|
population = collections.deque()
|
||
|
api.reset_time()
|
||
|
history, total_time_cost = [], [] # Not used by the algorithm, only used to report results.
|
||
|
|
||
|
# Initialize the population with random models.
|
||
|
while len(population) < population_size:
|
||
|
model = Model()
|
||
|
model.arch = random_arch()
|
||
|
model.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||
|
# Append the info
|
||
|
population.append(model)
|
||
|
history.append(model)
|
||
|
total_time_cost.append(total_cost)
|
||
|
|
||
|
# Carry out evolution in cycles. Each cycle produces a model and removes another.
|
||
|
while total_time_cost[-1] < time_budget:
|
||
|
# Sample randomly chosen models from the current population.
|
||
|
start_time, sample = time.time(), []
|
||
|
while len(sample) < sample_size:
|
||
|
# Inefficient, but written this way for clarity. In the case of neural
|
||
|
# nets, the efficiency of this line is irrelevant because training neural
|
||
|
# nets is the rate-determining step.
|
||
|
candidate = random.choice(list(population))
|
||
|
sample.append(candidate)
|
||
|
|
||
|
# The parent is the best model in the sample.
|
||
|
parent = max(sample, key=lambda i: i.accuracy)
|
||
|
|
||
|
# Create the child model and store it.
|
||
|
child = Model()
|
||
|
child.arch = mutate_arch(parent.arch)
|
||
|
child.accuracy, time_cost, total_cost = api.simulate_train_eval(model.arch, dataset, '12')
|
||
|
# Append the info
|
||
|
population.append(child)
|
||
|
history.append(child)
|
||
|
total_time_cost.append(total_cost)
|
||
|
|
||
|
# Remove the oldest model.
|
||
|
population.popleft()
|
||
|
return history, total_time_cost
|
||
|
|
||
|
|
||
|
def main(xargs, api):
|
||
|
assert torch.cuda.is_available(), 'CUDA is not available.'
|
||
|
torch.backends.cudnn.enabled = True
|
||
|
torch.backends.cudnn.benchmark = False
|
||
|
torch.backends.cudnn.deterministic = True
|
||
|
torch.set_num_threads(xargs.workers)
|
||
|
prepare_seed(xargs.rand_seed)
|
||
|
logger = prepare_logger(args)
|
||
|
|
||
|
search_space = get_search_spaces(xargs.search_space, 'nas-bench-301')
|
||
|
if xargs.search_space == 'tss':
|
||
|
random_arch = random_topology_func(search_space)
|
||
|
mutate_arch = mutate_topology_func(search_space)
|
||
|
else:
|
||
|
random_arch = random_size_func(search_space)
|
||
|
mutate_arch = mutate_size_func(search_space)
|
||
|
|
||
|
x_start_time = time.time()
|
||
|
logger.log('{:} use api : {:}'.format(time_string(), api))
|
||
|
logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget))
|
||
|
history, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset)
|
||
|
logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time))
|
||
|
best_arch = max(history, key=lambda i: i.accuracy)
|
||
|
best_arch = best_arch.arch
|
||
|
logger.log('{:} best arch is {:}'.format(time_string(), best_arch))
|
||
|
|
||
|
info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90')
|
||
|
logger.log('{:}'.format(info))
|
||
|
logger.log('-'*100)
|
||
|
logger.close()
|
||
|
return logger.log_dir, [api.query_index_by_arch(x.arch) for x in history], total_times
|
||
|
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser("Regularized Evolution Algorithm")
|
||
|
parser.add_argument('--dataset', type=str, choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.')
|
||
|
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||
|
# channels and number-of-cells
|
||
|
parser.add_argument('--ea_cycles', type=int, help='The number of cycles in EA.')
|
||
|
parser.add_argument('--ea_population', type=int, help='The population size in EA.')
|
||
|
parser.add_argument('--ea_sample_size', type=int, help='The sample size in EA.')
|
||
|
parser.add_argument('--time_budget', type=int, help='The total time cost budge for searching (in seconds).')
|
||
|
# log
|
||
|
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
|
||
|
parser.add_argument('--save_dir', type=str, default='./output/search', help='Folder to save checkpoints and log.')
|
||
|
parser.add_argument('--rand_seed', type=int, default=-1, help='manual seed')
|
||
|
args = parser.parse_args()
|
||
|
#if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000)
|
||
|
|
||
|
if args.search_space == 'tss':
|
||
|
api = NASBench201API(verbose=False)
|
||
|
elif args.search_space == 'sss':
|
||
|
api = NASBench301API(verbose=False)
|
||
|
else:
|
||
|
raise ValueError('Invalid search space : {:}'.format(args.search_space))
|
||
|
|
||
|
args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), 'R-EA-SS{:}'.format(args.ea_sample_size))
|
||
|
print('save-dir : {:}'.format(args.save_dir))
|
||
|
|
||
|
if args.rand_seed < 0:
|
||
|
save_dir, all_info, num = None, {}, 500
|
||
|
for i in range(num):
|
||
|
print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num))
|
||
|
args.rand_seed = random.randint(1, 100000)
|
||
|
save_dir, all_archs, all_total_times = main(args, api)
|
||
|
all_info[i] = {'all_archs': all_archs,
|
||
|
'all_total_times': all_total_times}
|
||
|
torch.save(all_info, save_dir / 'results.pth')
|
||
|
else:
|
||
|
main(args, api)
|