131 lines
6.2 KiB
Markdown
131 lines
6.2 KiB
Markdown
|
<p align="center">
|
||
|
<img src="https://xuanyidong.com/resources/images/AutoDL-log.png" width="400"/>
|
||
|
</p>
|
||
|
|
||
|
---------
|
||
|
[](LICENSE.md)
|
||
|
|
||
|
自动深度学习库 (AutoDL-Projects) 是一个开源的,轻量级的,功能强大的项目。
|
||
|
台项目目前实现了多种网络结构搜索(NAS)和超参数优化(HPO)算法。
|
||
|
|
||
|
**谁应该考虑使用AutoDL-Projects**
|
||
|
|
||
|
- 想尝试不同AutoDL算法的初学者
|
||
|
- 想调研AutoDL在特定问题上的有效性的工程师
|
||
|
- 想轻松实现和实验新AutoDL算法的研究员
|
||
|
|
||
|
**为什么我们要用AutoDL-Projects**
|
||
|
- 最简化的python依赖库
|
||
|
- 所有算法都在一个代码库下
|
||
|
- 积极地维护
|
||
|
|
||
|
|
||
|
## AutoDL-Projects 能力简述
|
||
|
|
||
|
目前,该项目提供了下列算法和以及对应的运行脚本。请点击每个算法对应的链接看他们的细节描述。
|
||
|
|
||
|
|
||
|
<table>
|
||
|
<tbody>
|
||
|
<tr align="center" valign="bottom">
|
||
|
<th>Type</th>
|
||
|
<th>ABBRV</th>
|
||
|
<th>Algorithms</th>
|
||
|
<th>Description</th>
|
||
|
</tr>
|
||
|
<tr> <!-- (1-st row) -->
|
||
|
<td rowspan="6" align="center" valign="middle" halign="middle"> NAS </td>
|
||
|
<td align="center" valign="middle"> TAS </td>
|
||
|
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1905.09717">Network Pruning via Transformable Architecture Search</a> </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NIPS-2019-TAS.md">NIPS-2019-TAS.md</a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (2-nd row) -->
|
||
|
<td align="center" valign="middle"> DARTS </td>
|
||
|
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1806.09055">DARTS: Differentiable Architecture Search</a> </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICLR-2019-DARTS.md">ICLR-2019-DARTS.md</a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (3-nd row) -->
|
||
|
<td align="center" valign="middle"> GDAS </td>
|
||
|
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.04465">Searching for A Robust Neural Architecture in Four GPU Hours</a> </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/CVPR-2019-GDAS.md">CVPR-2019-GDAS.md</a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (4-rd row) -->
|
||
|
<td align="center" valign="middle"> SETN </td>
|
||
|
<td align="center" valign="middle"> <a href="https://arxiv.org/abs/1910.05733">One-Shot Neural Architecture Search via Self-Evaluated Template Network</a> </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/ICCV-2019-SETN.md">ICCV-2019-SETN.md</a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (5-th row) -->
|
||
|
<td align="center" valign="middle"> NAS-Bench-201 </td>
|
||
|
<td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (6-th row) -->
|
||
|
<td align="center" valign="middle"> ... </td>
|
||
|
<td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (start second block) -->
|
||
|
<td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td>
|
||
|
<td align="center" valign="middle"> HPO-CG </td>
|
||
|
<td align="center" valign="middle"> Hyperparameter optimization with approximate gradient </td>
|
||
|
<td align="center" valign="middle"> coming soon </a> </td>
|
||
|
</tr>
|
||
|
<tr> <!-- (start third block) -->
|
||
|
<td rowspan="1" align="center" valign="middle" halign="middle"> Basic </td>
|
||
|
<td align="center" valign="middle"> ResNet </td>
|
||
|
<td align="center" valign="middle"> Deep Learning-based Image Classification </td>
|
||
|
<td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/BASELINE.md">BASELINE.md</a> </a> </td>
|
||
|
</tr>
|
||
|
</tbody>
|
||
|
</table>
|
||
|
|
||
|
|
||
|
## 准备工作
|
||
|
|
||
|
Please install `Python>=3.6` and `PyTorch>=1.3.0`. (You could also run this project in lower versions of Python and PyTorch, but may have bugs).
|
||
|
Some visualization codes may require `opencv`.
|
||
|
|
||
|
CIFAR and ImageNet should be downloaded and extracted into `$TORCH_HOME`.
|
||
|
Some methods use knowledge distillation (KD), which require pre-trained models. Please download these models from [Google Drive](https://drive.google.com/open?id=1ANmiYEGX-IQZTfH8w0aSpj-Wypg-0DR-) (or train by yourself) and save into `.latent-data`.
|
||
|
|
||
|
## 引用
|
||
|
|
||
|
如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献:
|
||
|
```
|
||
|
@inproceedings{dong2020nasbench201,
|
||
|
title = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search},
|
||
|
author = {Dong, Xuanyi and Yang, Yi},
|
||
|
booktitle = {International Conference on Learning Representations (ICLR)},
|
||
|
url = {https://openreview.net/forum?id=HJxyZkBKDr},
|
||
|
year = {2020}
|
||
|
}
|
||
|
@inproceedings{dong2019tas,
|
||
|
title = {Network Pruning via Transformable Architecture Search},
|
||
|
author = {Dong, Xuanyi and Yang, Yi},
|
||
|
booktitle = {Neural Information Processing Systems (NeurIPS)},
|
||
|
year = {2019}
|
||
|
}
|
||
|
@inproceedings{dong2019one,
|
||
|
title = {One-Shot Neural Architecture Search via Self-Evaluated Template Network},
|
||
|
author = {Dong, Xuanyi and Yang, Yi},
|
||
|
booktitle = {Proceedings of the IEEE International Conference on Computer Vision (ICCV)},
|
||
|
pages = {3681--3690},
|
||
|
year = {2019}
|
||
|
}
|
||
|
@inproceedings{dong2019search,
|
||
|
title = {Searching for A Robust Neural Architecture in Four GPU Hours},
|
||
|
author = {Dong, Xuanyi and Yang, Yi},
|
||
|
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
||
|
pages = {1761--1770},
|
||
|
year = {2019}
|
||
|
}
|
||
|
```
|
||
|
|
||
|
# 其他
|
||
|
|
||
|
如果你想要给这份代码库做贡献,请看[CONTRIBUTING.md](.github/CONTRIBUTING.md)。
|
||
|
此外,使用规范请参考[CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md)。
|
||
|
|
||
|
# 许可证
|
||
|
The entire codebase is under [MIT license](LICENSE.md)
|