xautodl/exps/trading/workflow_tt.py

112 lines
4.0 KiB
Python
Raw Normal View History

2021-03-03 14:57:48 +01:00
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 #
#####################################################
# Refer to:
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.ipynb
# - https://github.com/microsoft/qlib/blob/main/examples/workflow_by_code.py
# python exps/trading/workflow_tt.py
#####################################################
import sys, site, argparse
from pathlib import Path
lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve()
if str(lib_dir) not in sys.path:
sys.path.insert(0, str(lib_dir))
import qlib
from qlib.config import C
import pandas as pd
from qlib.config import REG_CN
from qlib.contrib.model.gbdt import LGBModel
from qlib.contrib.data.handler import Alpha158
from qlib.contrib.strategy.strategy import TopkDropoutStrategy
from qlib.contrib.evaluate import (
backtest as normal_backtest,
risk_analysis,
)
from qlib.utils import exists_qlib_data, init_instance_by_config
from qlib.workflow import R
from qlib.workflow.record_temp import SignalRecord, PortAnaRecord
from qlib.utils import flatten_dict
def main(xargs):
dataset_config = {
"class": "DatasetH",
"module_path": "qlib.data.dataset",
"kwargs": {
"handler": {
"class": "Alpha360",
"module_path": "qlib.contrib.data.handler",
"kwargs": {
"start_time": "2008-01-01",
"end_time": "2020-08-01",
"fit_start_time": "2008-01-01",
"fit_end_time": "2014-12-31",
"instruments": xargs.market,
"infer_processors": [
{"class": "RobustZScoreNorm", "kwargs": {"fields_group": "feature", "clip_outlier": True}},
{"class": "Fillna", "kwargs": {"fields_group": "feature"}},
],
"learn_processors": [
{"class": "DropnaLabel"},
{"class": "CSRankNorm", "kwargs": {"fields_group": "label"}},
],
"label": ["Ref($close, -2) / Ref($close, -1) - 1"],
},
},
"segments": {
"train": ("2008-01-01", "2014-12-31"),
"valid": ("2015-01-01", "2016-12-31"),
"test": ("2017-01-01", "2020-08-01"),
},
},
}
model_config = {
"class": "QuantTransformer",
"module_path": "trade_models",
"kwargs": {
"loss": "mse",
"GPU": "0",
"metric": "loss",
},
}
task = {"model": model_config, "dataset": dataset_config}
model = init_instance_by_config(model_config)
dataset = init_instance_by_config(dataset_config)
# start exp to train model
with R.start(experiment_name="train_tt_model"):
R.log_params(**flatten_dict(task))
model.fit(dataset)
R.save_objects(trained_model=model)
2021-03-04 06:42:52 +01:00
# prediction
recorder = R.get_recorder()
print(recorder)
sr = SignalRecord(model, dataset, recorder)
sr.generate()
# backtest. If users want to use backtest based on their own prediction,
# please refer to https://qlib.readthedocs.io/en/latest/component/recorder.html#record-template.
par = PortAnaRecord(recorder, port_analysis_config)
par.generate()
2021-03-03 14:57:48 +01:00
if __name__ == "__main__":
parser = argparse.ArgumentParser("Vanilla Transformable Transformer")
parser.add_argument("--save_dir", type=str, default="./outputs/tt-ml-runs", help="The checkpoint directory.")
parser.add_argument("--market", type=str, default="csi300", help="The market indicator.")
args = parser.parse_args()
provider_uri = "~/.qlib/qlib_data/cn_data" # target_dir
exp_manager = C.exp_manager
exp_manager["kwargs"]["uri"] = "file:{:}".format(Path(args.save_dir).resolve())
qlib.init(provider_uri=provider_uri, region=REG_CN, exp_manager=exp_manager)
main(args)