xautodl/exps/NAS-Bench-201/main.py

708 lines
27 KiB
Python
Raw Normal View History

###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
2020-02-23 00:30:37 +01:00
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08 #
###############################################################
2019-11-10 14:46:02 +01:00
import os, sys, time, torch, random, argparse
2021-03-17 10:25:58 +01:00
from PIL import ImageFile
2019-11-10 14:46:02 +01:00
ImageFile.LOAD_TRUNCATED_IMAGES = True
2021-03-17 10:25:58 +01:00
from copy import deepcopy
2019-11-10 14:46:02 +01:00
from pathlib import Path
from xautodl.config_utils import load_config
from xautodl.procedures import save_checkpoint, copy_checkpoint
from xautodl.procedures import get_machine_info
from xautodl.datasets import get_datasets
from xautodl.log_utils import Logger, AverageMeter, time_string, convert_secs2time
from xautodl.models import CellStructure, CellArchitectures, get_search_spaces
2024-10-14 23:19:28 +02:00
from functions import evaluate_for_seed
2019-11-10 14:46:02 +01:00
2024-10-14 23:19:28 +02:00
from torchvision import datasets, transforms
2019-11-10 14:46:02 +01:00
2021-03-18 09:02:55 +01:00
def evaluate_all_datasets(
arch, datasets, xpaths, splits, use_less, seed, arch_config, workers, logger
):
2021-03-17 10:25:58 +01:00
machine_info, arch_config = get_machine_info(), deepcopy(arch_config)
all_infos = {"info": machine_info}
all_dataset_keys = []
# look all the datasets
for dataset, xpath, split in zip(datasets, xpaths, splits):
# train valid data
train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1)
# load the configuration
if dataset == "cifar10" or dataset == "cifar100":
if use_less:
config_path = "configs/nas-benchmark/LESS.config"
else:
config_path = "configs/nas-benchmark/CIFAR.config"
2021-03-18 09:02:55 +01:00
split_info = load_config(
"configs/nas-benchmark/cifar-split.txt", None, None
)
2021-03-17 10:25:58 +01:00
elif dataset.startswith("ImageNet16"):
if use_less:
config_path = "configs/nas-benchmark/LESS.config"
else:
config_path = "configs/nas-benchmark/ImageNet-16.config"
2021-03-18 09:02:55 +01:00
split_info = load_config(
"configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
)
2024-10-14 23:19:28 +02:00
elif dataset.startswith("aircraft"):
if use_less:
config_path = "configs/nas-benchmark/LESS.config"
else:
config_path = "configs/nas-benchmark/aircraft.config"
split_info = load_config(
"configs/nas-benchmark/{:}-split.txt".format(dataset), None, None
)
2021-03-17 10:25:58 +01:00
else:
raise ValueError("invalid dataset : {:}".format(dataset))
2021-03-18 09:02:55 +01:00
config = load_config(
config_path, {"class_num": class_num, "xshape": xshape}, logger
)
2021-03-17 10:25:58 +01:00
# check whether use splited validation set
2024-10-14 23:19:28 +02:00
# if dataset == 'aircraft':
# split = True
2021-03-17 10:25:58 +01:00
if bool(split):
2024-10-14 23:19:28 +02:00
if dataset == "cifar10" or dataset == "cifar100":
assert dataset == "cifar10"
ValLoaders = {
"ori-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=workers,
pin_memory=True,
)
}
assert len(train_data) == len(split_info.train) + len(
split_info.valid
), "invalid length : {:} vs {:} + {:}".format(
len(train_data), len(split_info.train), len(split_info.valid)
)
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
# data loader
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
num_workers=workers,
pin_memory=True,
)
valid_loader = torch.utils.data.DataLoader(
2021-03-18 09:02:55 +01:00
valid_data,
batch_size=config.batch_size,
2024-10-14 23:19:28 +02:00
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
2021-03-18 09:02:55 +01:00
num_workers=workers,
pin_memory=True,
2021-03-17 10:25:58 +01:00
)
2024-10-14 23:19:28 +02:00
ValLoaders["x-valid"] = valid_loader
elif dataset == "aircraft":
ValLoaders = {
"ori-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=workers,
pin_memory=True,
)
}
train_data_v2 = deepcopy(train_data)
train_data_v2.transform = valid_data.transform
valid_data = train_data_v2
# 使用 DataLoader
train_loader = torch.utils.data.DataLoader(
train_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train),
num_workers=workers,
pin_memory=True)
valid_loader = torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid),
num_workers=workers,
pin_memory=True)
2021-03-17 10:25:58 +01:00
else:
# data loader
train_loader = torch.utils.data.DataLoader(
2021-03-18 09:02:55 +01:00
train_data,
batch_size=config.batch_size,
shuffle=True,
num_workers=workers,
pin_memory=True,
2021-03-17 10:25:58 +01:00
)
valid_loader = torch.utils.data.DataLoader(
2021-03-18 09:02:55 +01:00
valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=workers,
pin_memory=True,
2021-03-17 10:25:58 +01:00
)
2024-10-14 23:19:28 +02:00
if dataset == "cifar10" or dataset == "aircraft":
2021-03-17 10:25:58 +01:00
ValLoaders = {"ori-test": valid_loader}
elif dataset == "cifar100":
2021-03-18 09:02:55 +01:00
cifar100_splits = load_config(
"configs/nas-benchmark/cifar100-test-split.txt", None, None
)
2021-03-17 10:25:58 +01:00
ValLoaders = {
"ori-test": valid_loader,
"x-valid": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
2021-03-18 09:02:55 +01:00
sampler=torch.utils.data.sampler.SubsetRandomSampler(
cifar100_splits.xvalid
),
2021-03-17 10:25:58 +01:00
num_workers=workers,
pin_memory=True,
),
"x-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
2021-03-18 09:02:55 +01:00
sampler=torch.utils.data.sampler.SubsetRandomSampler(
cifar100_splits.xtest
),
2021-03-17 10:25:58 +01:00
num_workers=workers,
pin_memory=True,
),
}
elif dataset == "ImageNet16-120":
2021-03-18 09:02:55 +01:00
imagenet16_splits = load_config(
"configs/nas-benchmark/imagenet-16-120-test-split.txt", None, None
)
2021-03-17 10:25:58 +01:00
ValLoaders = {
"ori-test": valid_loader,
"x-valid": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
2021-03-18 09:02:55 +01:00
sampler=torch.utils.data.sampler.SubsetRandomSampler(
imagenet16_splits.xvalid
),
2021-03-17 10:25:58 +01:00
num_workers=workers,
pin_memory=True,
),
"x-test": torch.utils.data.DataLoader(
valid_data,
batch_size=config.batch_size,
2021-03-18 09:02:55 +01:00
sampler=torch.utils.data.sampler.SubsetRandomSampler(
imagenet16_splits.xtest
),
2021-03-17 10:25:58 +01:00
num_workers=workers,
pin_memory=True,
),
}
else:
raise ValueError("invalid dataset : {:}".format(dataset))
2019-12-02 08:03:40 +01:00
2021-03-17 10:25:58 +01:00
dataset_key = "{:}".format(dataset)
if bool(split):
dataset_key = dataset_key + "-valid"
logger.log(
"Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}".format(
2021-03-18 09:02:55 +01:00
dataset_key,
len(train_data),
len(valid_data),
len(train_loader),
len(valid_loader),
config.batch_size,
2021-03-17 10:25:58 +01:00
)
)
2021-03-18 09:02:55 +01:00
logger.log(
"Evaluate ||||||| {:10s} ||||||| Config={:}".format(dataset_key, config)
)
2021-03-17 10:25:58 +01:00
for key, value in ValLoaders.items():
2021-03-18 09:02:55 +01:00
logger.log(
"Evaluate ---->>>> {:10s} with {:} batchs".format(key, len(value))
)
results = evaluate_for_seed(
arch_config, config, arch, train_loader, ValLoaders, seed, logger
)
2021-03-17 10:25:58 +01:00
all_infos[dataset_key] = results
all_dataset_keys.append(dataset_key)
all_infos["all_dataset_keys"] = all_dataset_keys
return all_infos
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
def main(
2021-03-18 09:02:55 +01:00
save_dir,
workers,
datasets,
xpaths,
splits,
use_less,
srange,
arch_index,
seeds,
cover_mode,
meta_info,
arch_config,
2021-03-17 10:25:58 +01:00
):
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
# torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
torch.set_num_threads(workers)
2019-11-10 14:46:02 +01:00
2021-03-18 09:02:55 +01:00
assert (
len(srange) == 2 and 0 <= srange[0] <= srange[1]
), "invalid srange : {:}".format(srange)
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
if use_less:
sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}-LESS".format(
srange[0], srange[1], arch_config["channel"], arch_config["num_cells"]
)
else:
sub_dir = Path(save_dir) / "{:06d}-{:06d}-C{:}-N{:}".format(
srange[0], srange[1], arch_config["channel"], arch_config["num_cells"]
)
logger = Logger(str(sub_dir), 0, False)
all_archs = meta_info["archs"]
assert srange[1] < meta_info["total"], "invalid range : {:}-{:} vs. {:}".format(
srange[0], srange[1], meta_info["total"]
)
2021-03-18 09:02:55 +01:00
assert (
arch_index == -1 or srange[0] <= arch_index <= srange[1]
), "invalid range : {:} vs. {:} vs. {:}".format(srange[0], arch_index, srange[1])
2021-03-17 10:25:58 +01:00
if arch_index == -1:
to_evaluate_indexes = list(range(srange[0], srange[1] + 1))
else:
to_evaluate_indexes = [arch_index]
logger.log("xargs : seeds = {:}".format(seeds))
logger.log("xargs : arch_index = {:}".format(arch_index))
logger.log("xargs : cover_mode = {:}".format(cover_mode))
logger.log("-" * 100)
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
logger.log(
"Start evaluating range =: {:06d} vs. {:06d} vs. {:06d} / {:06d} with cover-mode={:}".format(
srange[0], arch_index, srange[1], meta_info["total"], cover_mode
)
)
for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)):
logger.log(
"--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}".format(
i, len(datasets), dataset, xpath, split
)
)
logger.log("--->>> architecture config : {:}".format(arch_config))
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
start_time, epoch_time = time.time(), AverageMeter()
for i, index in enumerate(to_evaluate_indexes):
arch = all_archs[index]
logger.log(
"\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th architecture [seeds={:}] {:}".format(
2021-03-18 09:02:55 +01:00
"-" * 15,
i,
len(to_evaluate_indexes),
index,
meta_info["total"],
seeds,
"-" * 15,
2021-03-17 10:25:58 +01:00
)
)
# logger.log('{:} {:} {:}'.format('-'*15, arch.tostr(), '-'*15))
logger.log("{:} {:} {:}".format("-" * 15, arch, "-" * 15))
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
# test this arch on different datasets with different seeds
has_continue = False
for seed in seeds:
to_save_name = sub_dir / "arch-{:06d}-seed-{:04d}.pth".format(index, seed)
if to_save_name.exists():
if cover_mode:
2021-03-18 09:02:55 +01:00
logger.log(
"Find existing file : {:}, remove it before evaluation".format(
to_save_name
)
)
2021-03-17 10:25:58 +01:00
os.remove(str(to_save_name))
else:
2021-03-18 09:02:55 +01:00
logger.log(
"Find existing file : {:}, skip this evaluation".format(
to_save_name
)
)
2021-03-17 10:25:58 +01:00
has_continue = True
continue
results = evaluate_all_datasets(
CellStructure.str2structure(arch),
datasets,
xpaths,
splits,
use_less,
seed,
arch_config,
workers,
logger,
)
torch.save(results, to_save_name)
logger.log(
"{:} --evaluate-- {:06d}/{:06d} ({:06d}/{:06d})-th seed={:} done, save into {:}".format(
2021-03-18 09:02:55 +01:00
"-" * 15,
i,
len(to_evaluate_indexes),
index,
meta_info["total"],
seed,
to_save_name,
2021-03-17 10:25:58 +01:00
)
)
# measure elapsed time
if not has_continue:
epoch_time.update(time.time() - start_time)
start_time = time.time()
need_time = "Time Left: {:}".format(
convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)
)
2021-03-18 09:02:55 +01:00
logger.log(
"This arch costs : {:}".format(convert_secs2time(epoch_time.val, True))
)
2021-03-17 10:25:58 +01:00
logger.log("{:}".format("*" * 100))
logger.log(
"{:} {:74s} {:}".format(
"*" * 10,
"{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}".format(
i, len(to_evaluate_indexes), index, meta_info["total"], need_time
),
"*" * 10,
)
)
logger.log("{:}".format("*" * 100))
logger.close()
2019-11-10 14:46:02 +01:00
2021-03-18 09:02:55 +01:00
def train_single_model(
save_dir, workers, datasets, xpaths, splits, use_less, seeds, model_str, arch_config
):
2021-03-17 10:25:58 +01:00
assert torch.cuda.is_available(), "CUDA is not available."
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = True
torch.set_num_threads(workers)
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
save_dir = (
Path(save_dir)
/ "specifics"
/ "{:}-{:}-{:}-{:}".format(
2021-03-18 09:02:55 +01:00
"LESS" if use_less else "FULL",
model_str,
arch_config["channel"],
arch_config["num_cells"],
2021-03-17 10:25:58 +01:00
)
)
logger = Logger(str(save_dir), 0, False)
if model_str in CellArchitectures:
arch = CellArchitectures[model_str]
2021-03-18 09:02:55 +01:00
logger.log(
"The model string is found in pre-defined architecture dict : {:}".format(
model_str
)
)
2019-11-10 14:46:02 +01:00
else:
2021-03-17 10:25:58 +01:00
try:
arch = CellStructure.str2structure(model_str)
except:
2021-03-18 09:02:55 +01:00
raise ValueError(
"Invalid model string : {:}. It can not be found or parsed.".format(
model_str
)
)
assert arch.check_valid_op(
get_search_spaces("cell", "full")
), "{:} has the invalid op.".format(arch)
2021-03-17 10:25:58 +01:00
logger.log("Start train-evaluate {:}".format(arch.tostr()))
logger.log("arch_config : {:}".format(arch_config))
start_time, seed_time = time.time(), AverageMeter()
for _is, seed in enumerate(seeds):
logger.log(
"\nThe {:02d}/{:02d}-th seed is {:} ----------------------<.>----------------------".format(
_is, len(seeds), seed
)
)
to_save_name = save_dir / "seed-{:04d}.pth".format(seed)
if to_save_name.exists():
2021-03-18 09:02:55 +01:00
logger.log(
"Find the existing file {:}, directly load!".format(to_save_name)
)
2021-03-17 10:25:58 +01:00
checkpoint = torch.load(to_save_name)
else:
2021-03-18 09:02:55 +01:00
logger.log(
"Does not find the existing file {:}, train and evaluate!".format(
to_save_name
)
)
2021-03-17 10:25:58 +01:00
checkpoint = evaluate_all_datasets(
2021-03-18 09:02:55 +01:00
arch,
datasets,
xpaths,
splits,
use_less,
seed,
arch_config,
workers,
logger,
2021-03-17 10:25:58 +01:00
)
torch.save(checkpoint, to_save_name)
# log information
logger.log("{:}".format(checkpoint["info"]))
all_dataset_keys = checkpoint["all_dataset_keys"]
for dataset_key in all_dataset_keys:
2021-03-18 09:02:55 +01:00
logger.log(
"\n{:} dataset : {:} {:}".format("-" * 15, dataset_key, "-" * 15)
)
2021-03-17 10:25:58 +01:00
dataset_info = checkpoint[dataset_key]
# logger.log('Network ==>\n{:}'.format( dataset_info['net_string'] ))
2021-03-18 09:02:55 +01:00
logger.log(
"Flops = {:} MB, Params = {:} MB".format(
dataset_info["flop"], dataset_info["param"]
)
)
2021-03-17 10:25:58 +01:00
logger.log("config : {:}".format(dataset_info["config"]))
2021-03-18 09:02:55 +01:00
logger.log(
"Training State (finish) = {:}".format(dataset_info["finish-train"])
)
2021-03-17 10:25:58 +01:00
last_epoch = dataset_info["total_epoch"] - 1
2021-03-18 09:02:55 +01:00
train_acc1es, train_acc5es = (
dataset_info["train_acc1es"],
dataset_info["train_acc5es"],
)
valid_acc1es, valid_acc5es = (
dataset_info["valid_acc1es"],
dataset_info["valid_acc5es"],
)
2021-03-17 10:25:58 +01:00
logger.log(
"Last Info : Train = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%, Test = Acc@1 {:.2f}% Acc@5 {:.2f}% Error@1 {:.2f}%".format(
train_acc1es[last_epoch],
train_acc5es[last_epoch],
100 - train_acc1es[last_epoch],
valid_acc1es[last_epoch],
valid_acc5es[last_epoch],
100 - valid_acc1es[last_epoch],
)
)
# measure elapsed time
seed_time.update(time.time() - start_time)
start_time = time.time()
2021-03-18 09:02:55 +01:00
need_time = "Time Left: {:}".format(
convert_secs2time(seed_time.avg * (len(seeds) - _is - 1), True)
)
2021-03-17 10:25:58 +01:00
logger.log(
"\n<<<***>>> The {:02d}/{:02d}-th seed is {:} <finish> other procedures need {:}".format(
_is, len(seeds), seed, need_time
)
)
logger.close()
2019-11-10 14:46:02 +01:00
def generate_meta_info(save_dir, max_node, divide=40):
2021-03-17 10:25:58 +01:00
aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201")
archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
2021-03-18 09:02:55 +01:00
print(
"There are {:} archs vs {:}.".format(
len(archs), len(aa_nas_bench_ss) ** ((max_node - 1) * max_node / 2)
)
)
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
random.seed(88) # please do not change this line for reproducibility
random.shuffle(archs)
# to test fixed-random shuffle
# print ('arch [0] : {:}\n---->>>> {:}'.format( archs[0], archs[0].tostr() ))
# print ('arch [9] : {:}\n---->>>> {:}'.format( archs[9], archs[9].tostr() ))
assert (
archs[0].tostr()
== "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
), "please check the 0-th architecture : {:}".format(archs[0])
assert (
2021-03-18 09:02:55 +01:00
archs[9].tostr()
== "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
2021-03-17 10:25:58 +01:00
), "please check the 9-th architecture : {:}".format(archs[9])
assert (
2021-03-18 09:02:55 +01:00
archs[123].tostr()
== "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
2021-03-17 10:25:58 +01:00
), "please check the 123-th architecture : {:}".format(archs[123])
total_arch = len(archs)
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
num = 50000
indexes_5W = list(range(num))
random.seed(1021)
random.shuffle(indexes_5W)
train_split = sorted(list(set(indexes_5W[: num // 2])))
valid_split = sorted(list(set(indexes_5W[num // 2 :])))
assert len(train_split) + len(valid_split) == num
assert (
train_split[0] == 0
and train_split[10] == 26
and train_split[111] == 203
and valid_split[0] == 1
and valid_split[10] == 18
and valid_split[111] == 242
), "{:} {:} {:} - {:} {:} {:}".format(
2021-03-18 09:02:55 +01:00
train_split[0],
train_split[10],
train_split[111],
valid_split[0],
valid_split[10],
valid_split[111],
2021-03-17 10:25:58 +01:00
)
splits = {num: {"train": train_split, "valid": valid_split}}
2019-11-10 14:46:02 +01:00
2021-03-18 09:02:55 +01:00
info = {
"archs": [x.tostr() for x in archs],
"total": total_arch,
"max_node": max_node,
"splits": splits,
}
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
save_dir = Path(save_dir)
save_dir.mkdir(parents=True, exist_ok=True)
save_name = save_dir / "meta-node-{:}.pth".format(max_node)
assert not save_name.exists(), "{:} already exist".format(save_name)
torch.save(info, save_name)
print("save the meta file into {:}".format(save_name))
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(max_node)
script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(max_node)
full_file = open(str(script_name_full), "w")
less_file = open(str(script_name_less), "w")
gaps = total_arch // divide
2019-11-10 14:46:02 +01:00
for start in range(0, total_arch, gaps):
2021-03-17 10:25:58 +01:00
xend = min(start + gaps, total_arch)
full_file.write(
"bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n".format(
start, xend - 1
)
)
less_file.write(
"bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n".format(
start, xend - 1
)
)
2021-03-18 09:02:55 +01:00
print(
"save the training script into {:} and {:}".format(
script_name_full, script_name_less
)
)
2021-03-17 10:25:58 +01:00
full_file.close()
less_file.close()
script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node)
macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0"
with open(str(script_name), "w") as cfile:
for start in range(0, total_arch, gaps):
xend = min(start + gaps, total_arch)
cfile.write(
"{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n".format(
macro, start, xend - 1
)
)
print("save the post-processing script into {:}".format(script_name))
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
if __name__ == "__main__":
# mode_choices = ['meta', 'new', 'cover'] + ['specific-{:}'.format(_) for _ in CellArchitectures.keys()]
# parser = argparse.ArgumentParser(description='Algorithm-Agnostic NAS Benchmark', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser = argparse.ArgumentParser(
2021-03-18 09:02:55 +01:00
description="NAS-Bench-201",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
2021-03-17 10:25:58 +01:00
)
parser.add_argument("--mode", type=str, required=True, help="The script mode.")
2021-03-18 09:02:55 +01:00
parser.add_argument(
"--save_dir", type=str, help="Folder to save checkpoints and log."
)
2021-03-17 10:25:58 +01:00
parser.add_argument("--max_node", type=int, help="The maximum node in a cell.")
# use for train the model
parser.add_argument(
2021-03-18 09:02:55 +01:00
"--workers",
type=int,
default=8,
help="number of data loading workers (default: 2)",
)
parser.add_argument(
"--srange", type=int, nargs="+", help="The range of models to be evaluated"
)
parser.add_argument(
"--arch_index",
type=int,
default=-1,
help="The architecture index to be evaluated (cover mode).",
2021-03-17 10:25:58 +01:00
)
parser.add_argument("--datasets", type=str, nargs="+", help="The applied datasets.")
2021-03-18 09:02:55 +01:00
parser.add_argument(
"--xpaths", type=str, nargs="+", help="The root path for this dataset."
)
parser.add_argument(
"--splits", type=int, nargs="+", help="The root path for this dataset."
)
parser.add_argument(
"--use_less",
type=int,
default=0,
choices=[0, 1],
help="Using the less-training-epoch config.",
)
parser.add_argument(
"--seeds", type=int, nargs="+", help="The range of models to be evaluated"
)
2021-03-17 10:25:58 +01:00
parser.add_argument("--channel", type=int, help="The number of channels.")
2021-03-18 09:02:55 +01:00
parser.add_argument(
"--num_cells", type=int, help="The number of cells in one stage."
)
2021-03-17 10:25:58 +01:00
args = parser.parse_args()
2019-11-10 14:46:02 +01:00
2021-03-18 09:02:55 +01:00
assert args.mode in ["meta", "new", "cover"] or args.mode.startswith(
"specific-"
), "invalid mode : {:}".format(args.mode)
2021-03-17 10:25:58 +01:00
if args.mode == "meta":
generate_meta_info(args.save_dir, args.max_node)
elif args.mode.startswith("specific"):
assert len(args.mode.split("-")) == 2, "invalid mode : {:}".format(args.mode)
model_str = args.mode.split("-")[1]
train_single_model(
args.save_dir,
args.workers,
args.datasets,
args.xpaths,
args.splits,
args.use_less > 0,
tuple(args.seeds),
model_str,
{"channel": args.channel, "num_cells": args.num_cells},
)
else:
meta_path = Path(args.save_dir) / "meta-node-{:}.pth".format(args.max_node)
assert meta_path.exists(), "{:} does not exist.".format(meta_path)
meta_info = torch.load(meta_path)
# check whether args is ok
2021-03-18 09:02:55 +01:00
assert (
len(args.srange) == 2 and args.srange[0] <= args.srange[1]
), "invalid length of srange args: {:}".format(args.srange)
assert len(args.seeds) > 0, "invalid length of seeds args: {:}".format(
args.seeds
2021-03-17 10:25:58 +01:00
)
2021-03-18 09:02:55 +01:00
assert (
len(args.datasets) == len(args.xpaths) == len(args.splits)
), "invalid infos : {:} vs {:} vs {:}".format(
2021-03-17 10:25:58 +01:00
len(args.datasets), len(args.xpaths), len(args.splits)
)
assert args.workers > 0, "invalid number of workers : {:}".format(args.workers)
2019-11-10 14:46:02 +01:00
2021-03-17 10:25:58 +01:00
main(
args.save_dir,
args.workers,
args.datasets,
args.xpaths,
args.splits,
args.use_less > 0,
tuple(args.srange),
args.arch_index,
tuple(args.seeds),
args.mode == "cover",
meta_info,
{"channel": args.channel, "num_cells": args.num_cells},
)