Update scripts
This commit is contained in:
		 Submodule .latent-data/qlib updated: 3886022669...9d04ae4676
									
								
							| @@ -58,7 +58,7 @@ def to_layer(config, embed_dim, depth): | |||||||
|  |  | ||||||
| def extend_transformer_settings(alg2configs, name): | def extend_transformer_settings(alg2configs, name): | ||||||
|     config = copy.deepcopy(alg2configs[name]) |     config = copy.deepcopy(alg2configs[name]) | ||||||
|     for i in range(6): |     for i in range(1, 7): | ||||||
|         for j in [6, 12, 24, 32, 48, 64]: |         for j in [6, 12, 24, 32, 48, 64]: | ||||||
|             for k in [0, 0.1]: |             for k in [0, 0.1]: | ||||||
|                 alg2configs[name + "-{:}x{:}-d{:}".format(i, j, k)] = to_layer( |                 alg2configs[name + "-{:}x{:}-d{:}".format(i, j, k)] = to_layer( | ||||||
|   | |||||||
| @@ -1,356 +0,0 @@ | |||||||
| ################################################## |  | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # |  | ||||||
| ################################################## |  | ||||||
| from __future__ import division |  | ||||||
| from __future__ import print_function |  | ||||||
|  |  | ||||||
| import os, math, random |  | ||||||
| from collections import OrderedDict |  | ||||||
| import numpy as np |  | ||||||
| import pandas as pd |  | ||||||
| import copy |  | ||||||
| from functools import partial |  | ||||||
| from typing import Optional, Text |  | ||||||
|  |  | ||||||
| from qlib.utils import ( |  | ||||||
|     unpack_archive_with_buffer, |  | ||||||
|     save_multiple_parts_file, |  | ||||||
|     get_or_create_path, |  | ||||||
|     drop_nan_by_y_index, |  | ||||||
| ) |  | ||||||
| from qlib.log import get_module_logger |  | ||||||
|  |  | ||||||
| import torch |  | ||||||
| import torch.nn.functional as F |  | ||||||
| import torch.optim as optim |  | ||||||
| import torch.utils.data as th_data |  | ||||||
|  |  | ||||||
| from log_utils import AverageMeter |  | ||||||
| from utils import count_parameters |  | ||||||
|  |  | ||||||
| from xlayers import super_core |  | ||||||
| from .transformers import DEFAULT_NET_CONFIG |  | ||||||
| from .transformers import get_transformer |  | ||||||
|  |  | ||||||
|  |  | ||||||
| from qlib.model.base import Model |  | ||||||
| from qlib.data.dataset import DatasetH |  | ||||||
| from qlib.data.dataset.handler import DataHandlerLP |  | ||||||
|  |  | ||||||
|  |  | ||||||
| DEFAULT_OPT_CONFIG = dict( |  | ||||||
|     epochs=200, |  | ||||||
|     lr=0.001, |  | ||||||
|     batch_size=2000, |  | ||||||
|     early_stop=20, |  | ||||||
|     loss="mse", |  | ||||||
|     optimizer="adam", |  | ||||||
|     num_workers=4, |  | ||||||
| ) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class QuantRandomSearchTransformer(Model): |  | ||||||
|     """Transformer-based Quant Model""" |  | ||||||
|  |  | ||||||
|     def __init__( |  | ||||||
|         self, |  | ||||||
|         net_config=None, |  | ||||||
|         opt_config=None, |  | ||||||
|         rs_times=10, |  | ||||||
|         metric="", |  | ||||||
|         GPU=0, |  | ||||||
|         seed=None, |  | ||||||
|         **kwargs |  | ||||||
|     ): |  | ||||||
|         # Set logger. |  | ||||||
|         self.logger = get_module_logger("RS-Transformer") |  | ||||||
|         self.logger.info("QuantTransformer PyTorch version...") |  | ||||||
|  |  | ||||||
|         # set hyper-parameters. |  | ||||||
|         self.net_config = net_config or DEFAULT_NET_CONFIG |  | ||||||
|         self.opt_config = opt_config or DEFAULT_OPT_CONFIG |  | ||||||
|         self.rs_times = rs_times |  | ||||||
|         self.metric = metric |  | ||||||
|         self.device = torch.device( |  | ||||||
|             "cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu" |  | ||||||
|         ) |  | ||||||
|         self.seed = seed |  | ||||||
|  |  | ||||||
|         self.logger.info( |  | ||||||
|             "Transformer parameters setting:" |  | ||||||
|             "\nnet_config : {:}" |  | ||||||
|             "\nopt_config : {:}" |  | ||||||
|             "\nrs_times   : {:}" |  | ||||||
|             "\nmetric     : {:}" |  | ||||||
|             "\ndevice     : {:}" |  | ||||||
|             "\nseed       : {:}".format( |  | ||||||
|                 self.net_config, |  | ||||||
|                 self.opt_config, |  | ||||||
|                 self.rs_times, |  | ||||||
|                 self.metric, |  | ||||||
|                 self.device, |  | ||||||
|                 self.seed, |  | ||||||
|             ) |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         if self.seed is not None: |  | ||||||
|             random.seed(self.seed) |  | ||||||
|             np.random.seed(self.seed) |  | ||||||
|             torch.manual_seed(self.seed) |  | ||||||
|             if self.use_gpu: |  | ||||||
|                 torch.cuda.manual_seed(self.seed) |  | ||||||
|                 torch.cuda.manual_seed_all(self.seed) |  | ||||||
|  |  | ||||||
|         """ |  | ||||||
|         # self.model = get_transformer(self.net_config) |  | ||||||
|         # self.model.set_super_run_type(super_core.SuperRunMode.FullModel) |  | ||||||
|         # self.logger.info("model: {:}".format(self.model)) |  | ||||||
|         # self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) |  | ||||||
|  |  | ||||||
|         if self.opt_config["optimizer"] == "adam": |  | ||||||
|             self.train_optimizer = optim.Adam( |  | ||||||
|                 self.model.parameters(), lr=self.opt_config["lr"] |  | ||||||
|             ) |  | ||||||
|         elif self.opt_config["optimizer"] == "adam": |  | ||||||
|             self.train_optimizer = optim.SGD( |  | ||||||
|                 self.model.parameters(), lr=self.opt_config["lr"] |  | ||||||
|             ) |  | ||||||
|         else: |  | ||||||
|             raise NotImplementedError( |  | ||||||
|                 "optimizer {:} is not supported!".format(optimizer) |  | ||||||
|             ) |  | ||||||
|         self.model.to(self.device) |  | ||||||
|         """ |  | ||||||
|  |  | ||||||
|         self.fitted = False |  | ||||||
|  |  | ||||||
|     @property |  | ||||||
|     def use_gpu(self): |  | ||||||
|         return self.device != torch.device("cpu") |  | ||||||
|  |  | ||||||
|     def loss_fn(self, pred, label): |  | ||||||
|         mask = ~torch.isnan(label) |  | ||||||
|         if self.opt_config["loss"] == "mse": |  | ||||||
|             return F.mse_loss(pred[mask], label[mask]) |  | ||||||
|         else: |  | ||||||
|             raise ValueError("unknown loss `{:}`".format(self.loss)) |  | ||||||
|  |  | ||||||
|     def metric_fn(self, pred, label): |  | ||||||
|         # the metric score : higher is better |  | ||||||
|         if self.metric == "" or self.metric == "loss": |  | ||||||
|             return -self.loss_fn(pred, label) |  | ||||||
|         else: |  | ||||||
|             raise ValueError("unknown metric `{:}`".format(self.metric)) |  | ||||||
|  |  | ||||||
|     def train_or_test_epoch( |  | ||||||
|         self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None |  | ||||||
|     ): |  | ||||||
|         if is_train: |  | ||||||
|             model.train() |  | ||||||
|         else: |  | ||||||
|             model.eval() |  | ||||||
|         score_meter, loss_meter = AverageMeter(), AverageMeter() |  | ||||||
|         for ibatch, (feats, labels) in enumerate(xloader): |  | ||||||
|             feats = feats.to(self.device, non_blocking=True) |  | ||||||
|             labels = labels.to(self.device, non_blocking=True) |  | ||||||
|             # forward the network |  | ||||||
|             preds = model(feats) |  | ||||||
|             loss = loss_fn(preds, labels) |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 score = self.metric_fn(preds, labels) |  | ||||||
|                 loss_meter.update(loss.item(), feats.size(0)) |  | ||||||
|                 score_meter.update(score.item(), feats.size(0)) |  | ||||||
|             # optimize the network |  | ||||||
|             if is_train and optimizer is not None: |  | ||||||
|                 optimizer.zero_grad() |  | ||||||
|                 loss.backward() |  | ||||||
|                 torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) |  | ||||||
|                 optimizer.step() |  | ||||||
|         return loss_meter.avg, score_meter.avg |  | ||||||
|  |  | ||||||
|     def search(self, rs_times, train_loader, valid_loader, save_dir): |  | ||||||
|         for index in range(rs_times): |  | ||||||
|             import pdb |  | ||||||
|  |  | ||||||
|             pdb.set_trace() |  | ||||||
|         print("---") |  | ||||||
|  |  | ||||||
|     def fit( |  | ||||||
|         self, |  | ||||||
|         dataset: DatasetH, |  | ||||||
|         save_dir: Optional[Text] = None, |  | ||||||
|     ): |  | ||||||
|         def _prepare_dataset(df_data): |  | ||||||
|             return th_data.TensorDataset( |  | ||||||
|                 torch.from_numpy(df_data["feature"].values).float(), |  | ||||||
|                 torch.from_numpy(df_data["label"].values).squeeze().float(), |  | ||||||
|             ) |  | ||||||
|  |  | ||||||
|         def _prepare_loader(dataset, shuffle): |  | ||||||
|             return th_data.DataLoader( |  | ||||||
|                 dataset, |  | ||||||
|                 batch_size=self.opt_config["batch_size"], |  | ||||||
|                 drop_last=False, |  | ||||||
|                 pin_memory=True, |  | ||||||
|                 num_workers=self.opt_config["num_workers"], |  | ||||||
|                 shuffle=shuffle, |  | ||||||
|             ) |  | ||||||
|  |  | ||||||
|         df_train, df_valid, df_test = dataset.prepare( |  | ||||||
|             ["train", "valid", "test"], |  | ||||||
|             col_set=["feature", "label"], |  | ||||||
|             data_key=DataHandlerLP.DK_L, |  | ||||||
|         ) |  | ||||||
|         train_dataset, valid_dataset, test_dataset = ( |  | ||||||
|             _prepare_dataset(df_train), |  | ||||||
|             _prepare_dataset(df_valid), |  | ||||||
|             _prepare_dataset(df_test), |  | ||||||
|         ) |  | ||||||
|         train_loader, valid_loader, test_loader = ( |  | ||||||
|             _prepare_loader(train_dataset, True), |  | ||||||
|             _prepare_loader(valid_dataset, False), |  | ||||||
|             _prepare_loader(test_dataset, False), |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         save_dir = get_or_create_path(save_dir, return_dir=True) |  | ||||||
|         self.logger.info( |  | ||||||
|             "Fit procedure for [{:}] with save path={:}".format( |  | ||||||
|                 self.__class__.__name__, save_dir |  | ||||||
|             ) |  | ||||||
|         ) |  | ||||||
|  |  | ||||||
|         model = search(self.rs_times, train_loader, valid_loader, save_dir) |  | ||||||
|  |  | ||||||
|         def _internal_test(ckp_epoch=None, results_dict=None): |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 train_loss, train_score = self.train_or_test_epoch( |  | ||||||
|                     train_loader, self.model, self.loss_fn, self.metric_fn, False, None |  | ||||||
|                 ) |  | ||||||
|                 valid_loss, valid_score = self.train_or_test_epoch( |  | ||||||
|                     valid_loader, self.model, self.loss_fn, self.metric_fn, False, None |  | ||||||
|                 ) |  | ||||||
|                 test_loss, test_score = self.train_or_test_epoch( |  | ||||||
|                     test_loader, self.model, self.loss_fn, self.metric_fn, False, None |  | ||||||
|                 ) |  | ||||||
|                 xstr = ( |  | ||||||
|                     "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( |  | ||||||
|                         train_score, valid_score, test_score |  | ||||||
|                     ) |  | ||||||
|                 ) |  | ||||||
|                 if ckp_epoch is not None and isinstance(results_dict, dict): |  | ||||||
|                     results_dict["train"][ckp_epoch] = train_score |  | ||||||
|                     results_dict["valid"][ckp_epoch] = valid_score |  | ||||||
|                     results_dict["test"][ckp_epoch] = test_score |  | ||||||
|                 return dict(train=train_score, valid=valid_score, test=test_score), xstr |  | ||||||
|  |  | ||||||
|         # Pre-fetch the potential checkpoints |  | ||||||
|         ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__)) |  | ||||||
|         if os.path.exists(ckp_path): |  | ||||||
|             ckp_data = torch.load(ckp_path) |  | ||||||
|             stop_steps, best_score, best_epoch = ( |  | ||||||
|                 ckp_data["stop_steps"], |  | ||||||
|                 ckp_data["best_score"], |  | ||||||
|                 ckp_data["best_epoch"], |  | ||||||
|             ) |  | ||||||
|             start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"] |  | ||||||
|             results_dict = ckp_data["results_dict"] |  | ||||||
|             self.model.load_state_dict(ckp_data["net_state_dict"]) |  | ||||||
|             self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"]) |  | ||||||
|             self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path)) |  | ||||||
|         else: |  | ||||||
|             stop_steps, best_score, best_epoch = 0, -np.inf, -1 |  | ||||||
|             start_epoch, best_param = 0, None |  | ||||||
|             results_dict = dict( |  | ||||||
|                 train=OrderedDict(), valid=OrderedDict(), test=OrderedDict() |  | ||||||
|             ) |  | ||||||
|             _, eval_str = _internal_test(-1, results_dict) |  | ||||||
|             self.logger.info( |  | ||||||
|                 "Training from scratch, metrics@start: {:}".format(eval_str) |  | ||||||
|             ) |  | ||||||
|  |  | ||||||
|         for iepoch in range(start_epoch, self.opt_config["epochs"]): |  | ||||||
|             self.logger.info( |  | ||||||
|                 "Epoch={:03d}/{:03d} ::==>> Best valid @{:03d} ({:.6f})".format( |  | ||||||
|                     iepoch, self.opt_config["epochs"], best_epoch, best_score |  | ||||||
|                 ) |  | ||||||
|             ) |  | ||||||
|             train_loss, train_score = self.train_or_test_epoch( |  | ||||||
|                 train_loader, |  | ||||||
|                 self.model, |  | ||||||
|                 self.loss_fn, |  | ||||||
|                 self.metric_fn, |  | ||||||
|                 True, |  | ||||||
|                 self.train_optimizer, |  | ||||||
|             ) |  | ||||||
|             self.logger.info( |  | ||||||
|                 "Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score) |  | ||||||
|             ) |  | ||||||
|  |  | ||||||
|             current_eval_scores, eval_str = _internal_test(iepoch, results_dict) |  | ||||||
|             self.logger.info("Evaluating :: {:}".format(eval_str)) |  | ||||||
|  |  | ||||||
|             if current_eval_scores["valid"] > best_score: |  | ||||||
|                 stop_steps, best_epoch, best_score = ( |  | ||||||
|                     0, |  | ||||||
|                     iepoch, |  | ||||||
|                     current_eval_scores["valid"], |  | ||||||
|                 ) |  | ||||||
|                 best_param = copy.deepcopy(self.model.state_dict()) |  | ||||||
|             else: |  | ||||||
|                 stop_steps += 1 |  | ||||||
|                 if stop_steps >= self.opt_config["early_stop"]: |  | ||||||
|                     self.logger.info( |  | ||||||
|                         "early stop at {:}-th epoch, where the best is @{:}".format( |  | ||||||
|                             iepoch, best_epoch |  | ||||||
|                         ) |  | ||||||
|                     ) |  | ||||||
|                     break |  | ||||||
|             save_info = dict( |  | ||||||
|                 net_config=self.net_config, |  | ||||||
|                 opt_config=self.opt_config, |  | ||||||
|                 net_state_dict=self.model.state_dict(), |  | ||||||
|                 opt_state_dict=self.train_optimizer.state_dict(), |  | ||||||
|                 best_param=best_param, |  | ||||||
|                 stop_steps=stop_steps, |  | ||||||
|                 best_score=best_score, |  | ||||||
|                 best_epoch=best_epoch, |  | ||||||
|                 results_dict=results_dict, |  | ||||||
|                 start_epoch=iepoch + 1, |  | ||||||
|             ) |  | ||||||
|             torch.save(save_info, ckp_path) |  | ||||||
|         self.logger.info( |  | ||||||
|             "The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch) |  | ||||||
|         ) |  | ||||||
|         self.model.load_state_dict(best_param) |  | ||||||
|         _, eval_str = _internal_test("final", results_dict) |  | ||||||
|         self.logger.info("Reload the best parameter :: {:}".format(eval_str)) |  | ||||||
|  |  | ||||||
|         if self.use_gpu: |  | ||||||
|             torch.cuda.empty_cache() |  | ||||||
|         self.fitted = True |  | ||||||
|  |  | ||||||
|     def predict(self, dataset): |  | ||||||
|         if not self.fitted: |  | ||||||
|             raise ValueError("The model is not fitted yet!") |  | ||||||
|         x_test = dataset.prepare("test", col_set="feature") |  | ||||||
|         index = x_test.index |  | ||||||
|  |  | ||||||
|         self.model.eval() |  | ||||||
|         x_values = x_test.values |  | ||||||
|         sample_num, batch_size = x_values.shape[0], self.opt_config["batch_size"] |  | ||||||
|         preds = [] |  | ||||||
|  |  | ||||||
|         for begin in range(sample_num)[::batch_size]: |  | ||||||
|  |  | ||||||
|             if sample_num - begin < batch_size: |  | ||||||
|                 end = sample_num |  | ||||||
|             else: |  | ||||||
|                 end = begin + batch_size |  | ||||||
|  |  | ||||||
|             x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) |  | ||||||
|  |  | ||||||
|             with torch.no_grad(): |  | ||||||
|                 pred = self.model(x_batch).detach().cpu().numpy() |  | ||||||
|             preds.append(pred) |  | ||||||
|  |  | ||||||
|         return pd.Series(np.concatenate(preds), index=index) |  | ||||||
| @@ -308,10 +308,10 @@ class QuantTransformer(Model): | |||||||
|             torch.cuda.empty_cache() |             torch.cuda.empty_cache() | ||||||
|         self.fitted = True |         self.fitted = True | ||||||
|  |  | ||||||
|     def predict(self, dataset): |     def predict(self, dataset, segment="test"): | ||||||
|         if not self.fitted: |         if not self.fitted: | ||||||
|             raise ValueError("The model is not fitted yet!") |             raise ValueError("The model is not fitted yet!") | ||||||
|         x_test = dataset.prepare("test", col_set="feature") |         x_test = dataset.prepare(segment, col_set="feature") | ||||||
|         index = x_test.index |         index = x_test.index | ||||||
|  |  | ||||||
|         self.model.eval() |         self.model.eval() | ||||||
|   | |||||||
| @@ -1,6 +1,7 @@ | |||||||
| #!/bin/bash | #!/bin/bash | ||||||
| # | # | ||||||
| # bash scripts/trade/tsf.sh 0 csi300 3 | # bash scripts/trade/tsf.sh 0 csi300 3 0 | ||||||
|  | # bash scripts/trade/tsf.sh 0 csi300 3 0.1 | ||||||
| # bash scripts/trade/tsf.sh 1 csi100 3 | # bash scripts/trade/tsf.sh 1 csi100 3 | ||||||
| # bash scripts/trade/tsf.sh 1 all    3 | # bash scripts/trade/tsf.sh 1 all    3 | ||||||
| # | # | ||||||
| @@ -8,7 +9,7 @@ set -e | |||||||
| echo script name: $0 | echo script name: $0 | ||||||
| echo $# arguments | echo $# arguments | ||||||
|  |  | ||||||
| if [ "$#" -ne 3 ] ;then | if [ "$#" -ne 4 ] ;then | ||||||
|   echo "Input illegal number of parameters " $# |   echo "Input illegal number of parameters " $# | ||||||
|   exit 1 |   exit 1 | ||||||
| fi | fi | ||||||
| @@ -16,12 +17,13 @@ fi | |||||||
| gpu=$1 | gpu=$1 | ||||||
| market=$2 | market=$2 | ||||||
| depth=$3 | depth=$3 | ||||||
|  | drop=$4 | ||||||
|  |  | ||||||
| channels="6 12 24 32 48 64" | channels="6 12 24 32 48 64" | ||||||
|  |  | ||||||
| for channel in ${channels} | for channel in ${channels} | ||||||
| do | do | ||||||
|  |  | ||||||
|   python exps/trading/baselines.py --alg TSF-${depth}x${channel}-d0 --gpu ${gpu} --market ${market} |   python exps/trading/baselines.py --alg TSF-${depth}x${channel}-d${drop} --gpu ${gpu} --market ${market} | ||||||
|  |  | ||||||
| done | done | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user