Update scripts
This commit is contained in:
		 Submodule .latent-data/qlib updated: 3886022669...9d04ae4676
									
								
							| @@ -58,7 +58,7 @@ def to_layer(config, embed_dim, depth): | ||||
|  | ||||
| def extend_transformer_settings(alg2configs, name): | ||||
|     config = copy.deepcopy(alg2configs[name]) | ||||
|     for i in range(6): | ||||
|     for i in range(1, 7): | ||||
|         for j in [6, 12, 24, 32, 48, 64]: | ||||
|             for k in [0, 0.1]: | ||||
|                 alg2configs[name + "-{:}x{:}-d{:}".format(i, j, k)] = to_layer( | ||||
|   | ||||
| @@ -1,356 +0,0 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021 # | ||||
| ################################################## | ||||
| from __future__ import division | ||||
| from __future__ import print_function | ||||
|  | ||||
| import os, math, random | ||||
| from collections import OrderedDict | ||||
| import numpy as np | ||||
| import pandas as pd | ||||
| import copy | ||||
| from functools import partial | ||||
| from typing import Optional, Text | ||||
|  | ||||
| from qlib.utils import ( | ||||
|     unpack_archive_with_buffer, | ||||
|     save_multiple_parts_file, | ||||
|     get_or_create_path, | ||||
|     drop_nan_by_y_index, | ||||
| ) | ||||
| from qlib.log import get_module_logger | ||||
|  | ||||
| import torch | ||||
| import torch.nn.functional as F | ||||
| import torch.optim as optim | ||||
| import torch.utils.data as th_data | ||||
|  | ||||
| from log_utils import AverageMeter | ||||
| from utils import count_parameters | ||||
|  | ||||
| from xlayers import super_core | ||||
| from .transformers import DEFAULT_NET_CONFIG | ||||
| from .transformers import get_transformer | ||||
|  | ||||
|  | ||||
| from qlib.model.base import Model | ||||
| from qlib.data.dataset import DatasetH | ||||
| from qlib.data.dataset.handler import DataHandlerLP | ||||
|  | ||||
|  | ||||
| DEFAULT_OPT_CONFIG = dict( | ||||
|     epochs=200, | ||||
|     lr=0.001, | ||||
|     batch_size=2000, | ||||
|     early_stop=20, | ||||
|     loss="mse", | ||||
|     optimizer="adam", | ||||
|     num_workers=4, | ||||
| ) | ||||
|  | ||||
|  | ||||
| class QuantRandomSearchTransformer(Model): | ||||
|     """Transformer-based Quant Model""" | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         net_config=None, | ||||
|         opt_config=None, | ||||
|         rs_times=10, | ||||
|         metric="", | ||||
|         GPU=0, | ||||
|         seed=None, | ||||
|         **kwargs | ||||
|     ): | ||||
|         # Set logger. | ||||
|         self.logger = get_module_logger("RS-Transformer") | ||||
|         self.logger.info("QuantTransformer PyTorch version...") | ||||
|  | ||||
|         # set hyper-parameters. | ||||
|         self.net_config = net_config or DEFAULT_NET_CONFIG | ||||
|         self.opt_config = opt_config or DEFAULT_OPT_CONFIG | ||||
|         self.rs_times = rs_times | ||||
|         self.metric = metric | ||||
|         self.device = torch.device( | ||||
|             "cuda:{:}".format(GPU) if torch.cuda.is_available() and GPU >= 0 else "cpu" | ||||
|         ) | ||||
|         self.seed = seed | ||||
|  | ||||
|         self.logger.info( | ||||
|             "Transformer parameters setting:" | ||||
|             "\nnet_config : {:}" | ||||
|             "\nopt_config : {:}" | ||||
|             "\nrs_times   : {:}" | ||||
|             "\nmetric     : {:}" | ||||
|             "\ndevice     : {:}" | ||||
|             "\nseed       : {:}".format( | ||||
|                 self.net_config, | ||||
|                 self.opt_config, | ||||
|                 self.rs_times, | ||||
|                 self.metric, | ||||
|                 self.device, | ||||
|                 self.seed, | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         if self.seed is not None: | ||||
|             random.seed(self.seed) | ||||
|             np.random.seed(self.seed) | ||||
|             torch.manual_seed(self.seed) | ||||
|             if self.use_gpu: | ||||
|                 torch.cuda.manual_seed(self.seed) | ||||
|                 torch.cuda.manual_seed_all(self.seed) | ||||
|  | ||||
|         """ | ||||
|         # self.model = get_transformer(self.net_config) | ||||
|         # self.model.set_super_run_type(super_core.SuperRunMode.FullModel) | ||||
|         # self.logger.info("model: {:}".format(self.model)) | ||||
|         # self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model))) | ||||
|  | ||||
|         if self.opt_config["optimizer"] == "adam": | ||||
|             self.train_optimizer = optim.Adam( | ||||
|                 self.model.parameters(), lr=self.opt_config["lr"] | ||||
|             ) | ||||
|         elif self.opt_config["optimizer"] == "adam": | ||||
|             self.train_optimizer = optim.SGD( | ||||
|                 self.model.parameters(), lr=self.opt_config["lr"] | ||||
|             ) | ||||
|         else: | ||||
|             raise NotImplementedError( | ||||
|                 "optimizer {:} is not supported!".format(optimizer) | ||||
|             ) | ||||
|         self.model.to(self.device) | ||||
|         """ | ||||
|  | ||||
|         self.fitted = False | ||||
|  | ||||
|     @property | ||||
|     def use_gpu(self): | ||||
|         return self.device != torch.device("cpu") | ||||
|  | ||||
|     def loss_fn(self, pred, label): | ||||
|         mask = ~torch.isnan(label) | ||||
|         if self.opt_config["loss"] == "mse": | ||||
|             return F.mse_loss(pred[mask], label[mask]) | ||||
|         else: | ||||
|             raise ValueError("unknown loss `{:}`".format(self.loss)) | ||||
|  | ||||
|     def metric_fn(self, pred, label): | ||||
|         # the metric score : higher is better | ||||
|         if self.metric == "" or self.metric == "loss": | ||||
|             return -self.loss_fn(pred, label) | ||||
|         else: | ||||
|             raise ValueError("unknown metric `{:}`".format(self.metric)) | ||||
|  | ||||
|     def train_or_test_epoch( | ||||
|         self, xloader, model, loss_fn, metric_fn, is_train, optimizer=None | ||||
|     ): | ||||
|         if is_train: | ||||
|             model.train() | ||||
|         else: | ||||
|             model.eval() | ||||
|         score_meter, loss_meter = AverageMeter(), AverageMeter() | ||||
|         for ibatch, (feats, labels) in enumerate(xloader): | ||||
|             feats = feats.to(self.device, non_blocking=True) | ||||
|             labels = labels.to(self.device, non_blocking=True) | ||||
|             # forward the network | ||||
|             preds = model(feats) | ||||
|             loss = loss_fn(preds, labels) | ||||
|             with torch.no_grad(): | ||||
|                 score = self.metric_fn(preds, labels) | ||||
|                 loss_meter.update(loss.item(), feats.size(0)) | ||||
|                 score_meter.update(score.item(), feats.size(0)) | ||||
|             # optimize the network | ||||
|             if is_train and optimizer is not None: | ||||
|                 optimizer.zero_grad() | ||||
|                 loss.backward() | ||||
|                 torch.nn.utils.clip_grad_value_(model.parameters(), 3.0) | ||||
|                 optimizer.step() | ||||
|         return loss_meter.avg, score_meter.avg | ||||
|  | ||||
|     def search(self, rs_times, train_loader, valid_loader, save_dir): | ||||
|         for index in range(rs_times): | ||||
|             import pdb | ||||
|  | ||||
|             pdb.set_trace() | ||||
|         print("---") | ||||
|  | ||||
|     def fit( | ||||
|         self, | ||||
|         dataset: DatasetH, | ||||
|         save_dir: Optional[Text] = None, | ||||
|     ): | ||||
|         def _prepare_dataset(df_data): | ||||
|             return th_data.TensorDataset( | ||||
|                 torch.from_numpy(df_data["feature"].values).float(), | ||||
|                 torch.from_numpy(df_data["label"].values).squeeze().float(), | ||||
|             ) | ||||
|  | ||||
|         def _prepare_loader(dataset, shuffle): | ||||
|             return th_data.DataLoader( | ||||
|                 dataset, | ||||
|                 batch_size=self.opt_config["batch_size"], | ||||
|                 drop_last=False, | ||||
|                 pin_memory=True, | ||||
|                 num_workers=self.opt_config["num_workers"], | ||||
|                 shuffle=shuffle, | ||||
|             ) | ||||
|  | ||||
|         df_train, df_valid, df_test = dataset.prepare( | ||||
|             ["train", "valid", "test"], | ||||
|             col_set=["feature", "label"], | ||||
|             data_key=DataHandlerLP.DK_L, | ||||
|         ) | ||||
|         train_dataset, valid_dataset, test_dataset = ( | ||||
|             _prepare_dataset(df_train), | ||||
|             _prepare_dataset(df_valid), | ||||
|             _prepare_dataset(df_test), | ||||
|         ) | ||||
|         train_loader, valid_loader, test_loader = ( | ||||
|             _prepare_loader(train_dataset, True), | ||||
|             _prepare_loader(valid_dataset, False), | ||||
|             _prepare_loader(test_dataset, False), | ||||
|         ) | ||||
|  | ||||
|         save_dir = get_or_create_path(save_dir, return_dir=True) | ||||
|         self.logger.info( | ||||
|             "Fit procedure for [{:}] with save path={:}".format( | ||||
|                 self.__class__.__name__, save_dir | ||||
|             ) | ||||
|         ) | ||||
|  | ||||
|         model = search(self.rs_times, train_loader, valid_loader, save_dir) | ||||
|  | ||||
|         def _internal_test(ckp_epoch=None, results_dict=None): | ||||
|             with torch.no_grad(): | ||||
|                 train_loss, train_score = self.train_or_test_epoch( | ||||
|                     train_loader, self.model, self.loss_fn, self.metric_fn, False, None | ||||
|                 ) | ||||
|                 valid_loss, valid_score = self.train_or_test_epoch( | ||||
|                     valid_loader, self.model, self.loss_fn, self.metric_fn, False, None | ||||
|                 ) | ||||
|                 test_loss, test_score = self.train_or_test_epoch( | ||||
|                     test_loader, self.model, self.loss_fn, self.metric_fn, False, None | ||||
|                 ) | ||||
|                 xstr = ( | ||||
|                     "train-score={:.6f}, valid-score={:.6f}, test-score={:.6f}".format( | ||||
|                         train_score, valid_score, test_score | ||||
|                     ) | ||||
|                 ) | ||||
|                 if ckp_epoch is not None and isinstance(results_dict, dict): | ||||
|                     results_dict["train"][ckp_epoch] = train_score | ||||
|                     results_dict["valid"][ckp_epoch] = valid_score | ||||
|                     results_dict["test"][ckp_epoch] = test_score | ||||
|                 return dict(train=train_score, valid=valid_score, test=test_score), xstr | ||||
|  | ||||
|         # Pre-fetch the potential checkpoints | ||||
|         ckp_path = os.path.join(save_dir, "{:}.pth".format(self.__class__.__name__)) | ||||
|         if os.path.exists(ckp_path): | ||||
|             ckp_data = torch.load(ckp_path) | ||||
|             stop_steps, best_score, best_epoch = ( | ||||
|                 ckp_data["stop_steps"], | ||||
|                 ckp_data["best_score"], | ||||
|                 ckp_data["best_epoch"], | ||||
|             ) | ||||
|             start_epoch, best_param = ckp_data["start_epoch"], ckp_data["best_param"] | ||||
|             results_dict = ckp_data["results_dict"] | ||||
|             self.model.load_state_dict(ckp_data["net_state_dict"]) | ||||
|             self.train_optimizer.load_state_dict(ckp_data["opt_state_dict"]) | ||||
|             self.logger.info("Resume from existing checkpoint: {:}".format(ckp_path)) | ||||
|         else: | ||||
|             stop_steps, best_score, best_epoch = 0, -np.inf, -1 | ||||
|             start_epoch, best_param = 0, None | ||||
|             results_dict = dict( | ||||
|                 train=OrderedDict(), valid=OrderedDict(), test=OrderedDict() | ||||
|             ) | ||||
|             _, eval_str = _internal_test(-1, results_dict) | ||||
|             self.logger.info( | ||||
|                 "Training from scratch, metrics@start: {:}".format(eval_str) | ||||
|             ) | ||||
|  | ||||
|         for iepoch in range(start_epoch, self.opt_config["epochs"]): | ||||
|             self.logger.info( | ||||
|                 "Epoch={:03d}/{:03d} ::==>> Best valid @{:03d} ({:.6f})".format( | ||||
|                     iepoch, self.opt_config["epochs"], best_epoch, best_score | ||||
|                 ) | ||||
|             ) | ||||
|             train_loss, train_score = self.train_or_test_epoch( | ||||
|                 train_loader, | ||||
|                 self.model, | ||||
|                 self.loss_fn, | ||||
|                 self.metric_fn, | ||||
|                 True, | ||||
|                 self.train_optimizer, | ||||
|             ) | ||||
|             self.logger.info( | ||||
|                 "Training :: loss={:.6f}, score={:.6f}".format(train_loss, train_score) | ||||
|             ) | ||||
|  | ||||
|             current_eval_scores, eval_str = _internal_test(iepoch, results_dict) | ||||
|             self.logger.info("Evaluating :: {:}".format(eval_str)) | ||||
|  | ||||
|             if current_eval_scores["valid"] > best_score: | ||||
|                 stop_steps, best_epoch, best_score = ( | ||||
|                     0, | ||||
|                     iepoch, | ||||
|                     current_eval_scores["valid"], | ||||
|                 ) | ||||
|                 best_param = copy.deepcopy(self.model.state_dict()) | ||||
|             else: | ||||
|                 stop_steps += 1 | ||||
|                 if stop_steps >= self.opt_config["early_stop"]: | ||||
|                     self.logger.info( | ||||
|                         "early stop at {:}-th epoch, where the best is @{:}".format( | ||||
|                             iepoch, best_epoch | ||||
|                         ) | ||||
|                     ) | ||||
|                     break | ||||
|             save_info = dict( | ||||
|                 net_config=self.net_config, | ||||
|                 opt_config=self.opt_config, | ||||
|                 net_state_dict=self.model.state_dict(), | ||||
|                 opt_state_dict=self.train_optimizer.state_dict(), | ||||
|                 best_param=best_param, | ||||
|                 stop_steps=stop_steps, | ||||
|                 best_score=best_score, | ||||
|                 best_epoch=best_epoch, | ||||
|                 results_dict=results_dict, | ||||
|                 start_epoch=iepoch + 1, | ||||
|             ) | ||||
|             torch.save(save_info, ckp_path) | ||||
|         self.logger.info( | ||||
|             "The best score: {:.6f} @ {:02d}-th epoch".format(best_score, best_epoch) | ||||
|         ) | ||||
|         self.model.load_state_dict(best_param) | ||||
|         _, eval_str = _internal_test("final", results_dict) | ||||
|         self.logger.info("Reload the best parameter :: {:}".format(eval_str)) | ||||
|  | ||||
|         if self.use_gpu: | ||||
|             torch.cuda.empty_cache() | ||||
|         self.fitted = True | ||||
|  | ||||
|     def predict(self, dataset): | ||||
|         if not self.fitted: | ||||
|             raise ValueError("The model is not fitted yet!") | ||||
|         x_test = dataset.prepare("test", col_set="feature") | ||||
|         index = x_test.index | ||||
|  | ||||
|         self.model.eval() | ||||
|         x_values = x_test.values | ||||
|         sample_num, batch_size = x_values.shape[0], self.opt_config["batch_size"] | ||||
|         preds = [] | ||||
|  | ||||
|         for begin in range(sample_num)[::batch_size]: | ||||
|  | ||||
|             if sample_num - begin < batch_size: | ||||
|                 end = sample_num | ||||
|             else: | ||||
|                 end = begin + batch_size | ||||
|  | ||||
|             x_batch = torch.from_numpy(x_values[begin:end]).float().to(self.device) | ||||
|  | ||||
|             with torch.no_grad(): | ||||
|                 pred = self.model(x_batch).detach().cpu().numpy() | ||||
|             preds.append(pred) | ||||
|  | ||||
|         return pd.Series(np.concatenate(preds), index=index) | ||||
| @@ -308,10 +308,10 @@ class QuantTransformer(Model): | ||||
|             torch.cuda.empty_cache() | ||||
|         self.fitted = True | ||||
|  | ||||
|     def predict(self, dataset): | ||||
|     def predict(self, dataset, segment="test"): | ||||
|         if not self.fitted: | ||||
|             raise ValueError("The model is not fitted yet!") | ||||
|         x_test = dataset.prepare("test", col_set="feature") | ||||
|         x_test = dataset.prepare(segment, col_set="feature") | ||||
|         index = x_test.index | ||||
|  | ||||
|         self.model.eval() | ||||
|   | ||||
| @@ -1,6 +1,7 @@ | ||||
| #!/bin/bash | ||||
| # | ||||
| # bash scripts/trade/tsf.sh 0 csi300 3 | ||||
| # bash scripts/trade/tsf.sh 0 csi300 3 0 | ||||
| # bash scripts/trade/tsf.sh 0 csi300 3 0.1 | ||||
| # bash scripts/trade/tsf.sh 1 csi100 3 | ||||
| # bash scripts/trade/tsf.sh 1 all    3 | ||||
| # | ||||
| @@ -8,7 +9,7 @@ set -e | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
|  | ||||
| if [ "$#" -ne 3 ] ;then | ||||
| if [ "$#" -ne 4 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   exit 1 | ||||
| fi | ||||
| @@ -16,12 +17,13 @@ fi | ||||
| gpu=$1 | ||||
| market=$2 | ||||
| depth=$3 | ||||
| drop=$4 | ||||
|  | ||||
| channels="6 12 24 32 48 64" | ||||
|  | ||||
| for channel in ${channels} | ||||
| do | ||||
|  | ||||
|   python exps/trading/baselines.py --alg TSF-${depth}x${channel}-d0 --gpu ${gpu} --market ${market} | ||||
|   python exps/trading/baselines.py --alg TSF-${depth}x${channel}-d${drop} --gpu ${gpu} --market ${market} | ||||
|  | ||||
| done | ||||
|   | ||||
		Reference in New Issue
	
	Block a user