Add SuperSequential
This commit is contained in:
		| @@ -1,6 +1,8 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest tests/test_basic_space.py -s               # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| import pytest | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest ./tests/test_super_model.py -s             # | ||||
| # pytest ./tests/test_super_att.py -s               # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
|   | ||||
							
								
								
									
										68
									
								
								tests/test_super_container.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										68
									
								
								tests/test_super_container.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,68 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest ./tests/test_super_container.py -s         # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| import pytest | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||
| print("library path: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| import torch | ||||
| from xlayers import super_core | ||||
| import spaces | ||||
|  | ||||
|  | ||||
| """Test the super container layers.""" | ||||
|  | ||||
|  | ||||
| def _internal_func(inputs, model): | ||||
|     outputs = model(inputs) | ||||
|     abstract_space = model.abstract_search_space | ||||
|     print( | ||||
|         "The abstract search space for SuperAttention is:\n{:}".format(abstract_space) | ||||
|     ) | ||||
|     abstract_space.clean_last() | ||||
|     abstract_child = abstract_space.random(reuse_last=True) | ||||
|     print("The abstract child program is:\n{:}".format(abstract_child)) | ||||
|     model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|     model.apply_candidate(abstract_child) | ||||
|     outputs = model(inputs) | ||||
|     return abstract_child, outputs | ||||
|  | ||||
|  | ||||
| def _create_stel(input_dim, output_dim): | ||||
|     return super_core.SuperTransformerEncoderLayer( | ||||
|         input_dim, | ||||
|         output_dim, | ||||
|         num_heads=spaces.Categorical(2, 4, 6), | ||||
|         mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||
|     ) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("batch", (1, 2, 4)) | ||||
| @pytest.mark.parametrize("seq_dim", (1, 10, 30)) | ||||
| @pytest.mark.parametrize("input_dim", (6, 12, 24, 27)) | ||||
| def test_super_sequential(batch, seq_dim, input_dim): | ||||
|     out1_dim = spaces.Categorical(12, 24, 36) | ||||
|     out2_dim = spaces.Categorical(24, 36, 48) | ||||
|     out3_dim = spaces.Categorical(36, 72, 100) | ||||
|     layer1 = _create_stel(input_dim, out1_dim) | ||||
|     layer2 = _create_stel(out1_dim, out2_dim) | ||||
|     layer3 = _create_stel(out2_dim, out3_dim) | ||||
|     model = super_core.SuperSequential(layer1, layer2, layer3) | ||||
|     print(model) | ||||
|     model.apply_verbose(True) | ||||
|     inputs = torch.rand(batch, seq_dim, input_dim) | ||||
|     abstract_child, outputs = _internal_func(inputs, model) | ||||
|     output_shape = ( | ||||
|         batch, | ||||
|         seq_dim, | ||||
|         out3_dim.abstract(reuse_last=True).random(reuse_last=True).value, | ||||
|     ) | ||||
|     assert tuple(outputs.shape) == output_shape | ||||
		Reference in New Issue
	
	Block a user