Add SuperSequential
This commit is contained in:
		
							
								
								
									
										2
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.github/workflows/super_model_test.yml
									
									
									
									
										vendored
									
									
								
							| @@ -29,5 +29,5 @@ jobs: | |||||||
|           python -m pip install pytest numpy |           python -m pip install pytest numpy | ||||||
|           python -m pip install parameterized |           python -m pip install parameterized | ||||||
|           python -m pip install torch torchvision torchaudio |           python -m pip install torch torchvision torchaudio | ||||||
|           python -m pytest ./tests/test_super_model.py -s |           python -m pytest ./tests/test_super_*.py -s | ||||||
|         shell: bash |         shell: bash | ||||||
|   | |||||||
| @@ -16,3 +16,8 @@ python -m black __init__.py -l 120 | |||||||
|  |  | ||||||
| pytest -W ignore::DeprecationWarning qlib/tests/test_all_pipeline.py | pytest -W ignore::DeprecationWarning qlib/tests/test_all_pipeline.py | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ``` | ||||||
|  | conda update --all | ||||||
|  | ``` | ||||||
|   | |||||||
							
								
								
									
										111
									
								
								lib/xlayers/super_container.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										111
									
								
								lib/xlayers/super_container.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,111 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
|  | ##################################################### | ||||||
|  | import torch | ||||||
|  |  | ||||||
|  | from itertools import islice | ||||||
|  | import operator | ||||||
|  |  | ||||||
|  | from collections import OrderedDict | ||||||
|  | from typing import Optional, Union, Callable, TypeVar, Iterator | ||||||
|  |  | ||||||
|  | import spaces | ||||||
|  | from .super_module import SuperModule | ||||||
|  |  | ||||||
|  |  | ||||||
|  | T = TypeVar("T", bound=SuperModule) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SuperSequential(SuperModule): | ||||||
|  |     """A sequential container wrapped with 'Super' ability. | ||||||
|  |  | ||||||
|  |     Modules will be added to it in the order they are passed in the constructor. | ||||||
|  |     Alternatively, an ordered dict of modules can also be passed in. | ||||||
|  |     To make it easier to understand, here is a small example:: | ||||||
|  |         # Example of using Sequential | ||||||
|  |         model = SuperSequential( | ||||||
|  |                   nn.Conv2d(1,20,5), | ||||||
|  |                   nn.ReLU(), | ||||||
|  |                   nn.Conv2d(20,64,5), | ||||||
|  |                   nn.ReLU() | ||||||
|  |                 ) | ||||||
|  |         # Example of using Sequential with OrderedDict | ||||||
|  |         model = nn.Sequential(OrderedDict([ | ||||||
|  |                   ('conv1', nn.Conv2d(1,20,5)), | ||||||
|  |                   ('relu1', nn.ReLU()), | ||||||
|  |                   ('conv2', nn.Conv2d(20,64,5)), | ||||||
|  |                   ('relu2', nn.ReLU()) | ||||||
|  |                 ])) | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     def __init__(self, *args): | ||||||
|  |         super(SuperSequential, self).__init__() | ||||||
|  |         if len(args) == 1 and isinstance(args[0], OrderedDict): | ||||||
|  |             for key, module in args[0].items(): | ||||||
|  |                 self.add_module(key, module) | ||||||
|  |         else: | ||||||
|  |             if not isinstance(args, (list, tuple)): | ||||||
|  |                 raise ValueError("Invalid input type: {:}".format(type(args))) | ||||||
|  |             for idx, module in enumerate(args): | ||||||
|  |                 self.add_module(str(idx), module) | ||||||
|  |  | ||||||
|  |     def _get_item_by_idx(self, iterator, idx) -> T: | ||||||
|  |         """Get the idx-th item of the iterator""" | ||||||
|  |         size = len(self) | ||||||
|  |         idx = operator.index(idx) | ||||||
|  |         if not -size <= idx < size: | ||||||
|  |             raise IndexError("index {} is out of range".format(idx)) | ||||||
|  |         idx %= size | ||||||
|  |         return next(islice(iterator, idx, None)) | ||||||
|  |  | ||||||
|  |     def __getitem__(self, idx) -> Union["SuperSequential", T]: | ||||||
|  |         if isinstance(idx, slice): | ||||||
|  |             return self.__class__(OrderedDict(list(self._modules.items())[idx])) | ||||||
|  |         else: | ||||||
|  |             return self._get_item_by_idx(self._modules.values(), idx) | ||||||
|  |  | ||||||
|  |     def __setitem__(self, idx: int, module: SuperModule) -> None: | ||||||
|  |         key: str = self._get_item_by_idx(self._modules.keys(), idx) | ||||||
|  |         return setattr(self, key, module) | ||||||
|  |  | ||||||
|  |     def __delitem__(self, idx: Union[slice, int]) -> None: | ||||||
|  |         if isinstance(idx, slice): | ||||||
|  |             for key in list(self._modules.keys())[idx]: | ||||||
|  |                 delattr(self, key) | ||||||
|  |         else: | ||||||
|  |             key = self._get_item_by_idx(self._modules.keys(), idx) | ||||||
|  |             delattr(self, key) | ||||||
|  |  | ||||||
|  |     def __len__(self) -> int: | ||||||
|  |         return len(self._modules) | ||||||
|  |  | ||||||
|  |     def __dir__(self): | ||||||
|  |         keys = super(SuperSequential, self).__dir__() | ||||||
|  |         keys = [key for key in keys if not key.isdigit()] | ||||||
|  |         return keys | ||||||
|  |  | ||||||
|  |     def __iter__(self) -> Iterator[SuperModule]: | ||||||
|  |         return iter(self._modules.values()) | ||||||
|  |  | ||||||
|  |     @property | ||||||
|  |     def abstract_search_space(self): | ||||||
|  |         root_node = spaces.VirtualNode(id(self)) | ||||||
|  |         for index, module in enumerate(self): | ||||||
|  |             space = module.abstract_search_space | ||||||
|  |             if not spaces.is_determined(space): | ||||||
|  |                 root_node.append(str(index), space) | ||||||
|  |         return root_node | ||||||
|  |  | ||||||
|  |     def apply_candidate(self, abstract_child: spaces.VirtualNode): | ||||||
|  |         super(SuperSequential, self).apply_candidate(abstract_child) | ||||||
|  |         for index in range(len(self)): | ||||||
|  |             if str(index) in abstract_child: | ||||||
|  |                 self.__getitem__(index).apply_candidate(abstract_child[str(index)]) | ||||||
|  |  | ||||||
|  |     def forward_candidate(self, input): | ||||||
|  |         return self.forward_raw(input) | ||||||
|  |  | ||||||
|  |     def forward_raw(self, input): | ||||||
|  |         for module in self: | ||||||
|  |             input = module(input) | ||||||
|  |         return input | ||||||
| @@ -3,6 +3,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| from .super_module import SuperRunMode | from .super_module import SuperRunMode | ||||||
| from .super_module import SuperModule | from .super_module import SuperModule | ||||||
|  | from .super_container import SuperSequential | ||||||
| from .super_linear import SuperLinear | from .super_linear import SuperLinear | ||||||
| from .super_linear import SuperMLPv1, SuperMLPv2 | from .super_linear import SuperMLPv1, SuperMLPv2 | ||||||
| from .super_norm import SuperLayerNorm1D | from .super_norm import SuperLayerNorm1D | ||||||
|   | |||||||
| @@ -1,6 +1,8 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
| ##################################################### | ##################################################### | ||||||
|  | # pytest tests/test_basic_space.py -s               # | ||||||
|  | ##################################################### | ||||||
| import sys, random | import sys, random | ||||||
| import unittest | import unittest | ||||||
| import pytest | import pytest | ||||||
|   | |||||||
| @@ -1,7 +1,7 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
| ##################################################### | ##################################################### | ||||||
| # pytest ./tests/test_super_model.py -s             # | # pytest ./tests/test_super_att.py -s               # | ||||||
| ##################################################### | ##################################################### | ||||||
| import sys, random | import sys, random | ||||||
| import unittest | import unittest | ||||||
|   | |||||||
							
								
								
									
										68
									
								
								tests/test_super_container.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										68
									
								
								tests/test_super_container.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,68 @@ | |||||||
|  | ##################################################### | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||||
|  | ##################################################### | ||||||
|  | # pytest ./tests/test_super_container.py -s         # | ||||||
|  | ##################################################### | ||||||
|  | import sys, random | ||||||
|  | import unittest | ||||||
|  | import pytest | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||||
|  | print("library path: {:}".format(lib_dir)) | ||||||
|  | if str(lib_dir) not in sys.path: | ||||||
|  |     sys.path.insert(0, str(lib_dir)) | ||||||
|  |  | ||||||
|  | import torch | ||||||
|  | from xlayers import super_core | ||||||
|  | import spaces | ||||||
|  |  | ||||||
|  |  | ||||||
|  | """Test the super container layers.""" | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def _internal_func(inputs, model): | ||||||
|  |     outputs = model(inputs) | ||||||
|  |     abstract_space = model.abstract_search_space | ||||||
|  |     print( | ||||||
|  |         "The abstract search space for SuperAttention is:\n{:}".format(abstract_space) | ||||||
|  |     ) | ||||||
|  |     abstract_space.clean_last() | ||||||
|  |     abstract_child = abstract_space.random(reuse_last=True) | ||||||
|  |     print("The abstract child program is:\n{:}".format(abstract_child)) | ||||||
|  |     model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||||
|  |     model.apply_candidate(abstract_child) | ||||||
|  |     outputs = model(inputs) | ||||||
|  |     return abstract_child, outputs | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def _create_stel(input_dim, output_dim): | ||||||
|  |     return super_core.SuperTransformerEncoderLayer( | ||||||
|  |         input_dim, | ||||||
|  |         output_dim, | ||||||
|  |         num_heads=spaces.Categorical(2, 4, 6), | ||||||
|  |         mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | @pytest.mark.parametrize("batch", (1, 2, 4)) | ||||||
|  | @pytest.mark.parametrize("seq_dim", (1, 10, 30)) | ||||||
|  | @pytest.mark.parametrize("input_dim", (6, 12, 24, 27)) | ||||||
|  | def test_super_sequential(batch, seq_dim, input_dim): | ||||||
|  |     out1_dim = spaces.Categorical(12, 24, 36) | ||||||
|  |     out2_dim = spaces.Categorical(24, 36, 48) | ||||||
|  |     out3_dim = spaces.Categorical(36, 72, 100) | ||||||
|  |     layer1 = _create_stel(input_dim, out1_dim) | ||||||
|  |     layer2 = _create_stel(out1_dim, out2_dim) | ||||||
|  |     layer3 = _create_stel(out2_dim, out3_dim) | ||||||
|  |     model = super_core.SuperSequential(layer1, layer2, layer3) | ||||||
|  |     print(model) | ||||||
|  |     model.apply_verbose(True) | ||||||
|  |     inputs = torch.rand(batch, seq_dim, input_dim) | ||||||
|  |     abstract_child, outputs = _internal_func(inputs, model) | ||||||
|  |     output_shape = ( | ||||||
|  |         batch, | ||||||
|  |         seq_dim, | ||||||
|  |         out3_dim.abstract(reuse_last=True).random(reuse_last=True).value, | ||||||
|  |     ) | ||||||
|  |     assert tuple(outputs.shape) == output_shape | ||||||
		Reference in New Issue
	
	Block a user