Update REA and REINFORCE
This commit is contained in:
		| @@ -3,13 +3,13 @@ | ||||
| ################################################################## | ||||
| # Regularized Evolution for Image Classifier Architecture Search # | ||||
| ################################################################## | ||||
| # python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/R_EA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/R_EA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/R_EA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # | ||||
| # | ||||
| # | ||||
| # python ./exps/algos-v2/REA.py --dataset cifar10 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/REA.py --dataset cifar100 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/REA.py --dataset cifar10 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/REA.py --dataset cifar100 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| # python ./exps/algos-v2/REA.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --ea_cycles 200 --ea_population 10 --ea_sample_size 3 --rand_seed 1 | ||||
| ################################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| @@ -236,12 +236,12 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--ea_population',      type=int,   help='The population size in EA.') | ||||
|   parser.add_argument('--ea_sample_size',     type=int,   help='The sample size in EA.') | ||||
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') | ||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500, help='The total runs for evaluation.') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,    help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|   #if args.rand_seed is None or args.rand_seed < 0: args.rand_seed = random.randint(1, 100000) | ||||
| 
 | ||||
|   if args.search_space == 'tss': | ||||
|     api = NASBench201API(verbose=False) | ||||
| @@ -250,17 +250,19 @@ if __name__ == '__main__': | ||||
|   else: | ||||
|     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||
| 
 | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), 'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
| 
 | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info, num = None, {}, 500 | ||||
|     for i in range(num): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, num)) | ||||
|     save_dir, all_info = None, {} | ||||
|     for i in range(args.loops_if_rand): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|       save_dir, all_archs, all_total_times = main(args, api) | ||||
|       all_info[i] = {'all_archs': all_archs, | ||||
|                      'all_total_times': all_total_times} | ||||
|     torch.save(all_info, save_dir / 'results.pth') | ||||
|     save_path = save_dir / 'results.pth' | ||||
|     print('save into {:}'.format(save_path)) | ||||
|     torch.save(all_info, save_path) | ||||
|   else: | ||||
|     main(args, api) | ||||
							
								
								
									
										1
									
								
								exps/algos-v2/README.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								exps/algos-v2/README.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| # Benchmarking NAS Algorithms | ||||
							
								
								
									
										222
									
								
								exps/algos-v2/reinforce.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										222
									
								
								exps/algos-v2/reinforce.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,222 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ##################################################################################################### | ||||
| # modified from https://github.com/pytorch/examples/blob/master/reinforcement_learning/reinforce.py # | ||||
| ##################################################################################################### | ||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space tss --time_budget 12000 --learning_rate 0.001  | ||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space tss --time_budget 12000 --learning_rate 0.001  | ||||
| # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space tss --time_budget 12000 --learning_rate 0.001  | ||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar10 --search_space sss --time_budget 12000 --learning_rate 0.001  | ||||
| # python ./exps/algos-v2/reinforce.py --dataset cifar100 --search_space sss --time_budget 12000 --learning_rate 0.001  | ||||
| # python ./exps/algos-v2/reinforce.py --dataset ImageNet16-120 --search_space sss --time_budget 12000 --learning_rate 0.001  | ||||
| ##################################################################################################### | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from torch.distributions import Categorical | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_201_api  import NASBench201API, NASBench301API | ||||
| from models       import CellStructure, get_search_spaces | ||||
|  | ||||
|  | ||||
| class PolicyTopology(nn.Module): | ||||
|  | ||||
|   def __init__(self, search_space, max_nodes=4): | ||||
|     super(PolicyTopology, self).__init__() | ||||
|     self.max_nodes    = max_nodes | ||||
|     self.search_space = deepcopy(search_space) | ||||
|     self.edge2index   = {} | ||||
|     for i in range(1, max_nodes): | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         self.edge2index[ node_str ] = len(self.edge2index) | ||||
|     self.arch_parameters = nn.Parameter(1e-3*torch.randn(len(self.edge2index), len(search_space))) | ||||
|  | ||||
|   def generate_arch(self, actions): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name  = self.search_space[ actions[ self.edge2index[ node_str ] ] ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes = [] | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         with torch.no_grad(): | ||||
|           weights = self.arch_parameters[ self.edge2index[node_str] ] | ||||
|           op_name = self.search_space[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|      | ||||
|   def forward(self): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     return alphas | ||||
|  | ||||
|  | ||||
| class PolicySize(nn.Module): | ||||
|  | ||||
|   def __init__(self, search_space): | ||||
|     super(PolicySize, self).__init__() | ||||
|     self.candidates = search_space['candidates'] | ||||
|     self.numbers = search_space['numbers'] | ||||
|     self.arch_parameters = nn.Parameter(1e-3*torch.randn(self.numbers, len(self.candidates))) | ||||
|  | ||||
|   def generate_arch(self, actions): | ||||
|     channels = [str(self.candidates[i]) for i in actions] | ||||
|     return ':'.join(channels) | ||||
|  | ||||
|   def genotype(self): | ||||
|     channels = [] | ||||
|     for i in range(self.numbers): | ||||
|       index = self.arch_parameters[i].argmax().item() | ||||
|       channels.append(str(self.candidates[index])) | ||||
|     return ':'.join(channels) | ||||
|      | ||||
|   def forward(self): | ||||
|     alphas  = nn.functional.softmax(self.arch_parameters, dim=-1) | ||||
|     return alphas | ||||
|  | ||||
|  | ||||
| class ExponentialMovingAverage(object): | ||||
|   """Class that maintains an exponential moving average.""" | ||||
|  | ||||
|   def __init__(self, momentum): | ||||
|     self._numerator   = 0 | ||||
|     self._denominator = 0 | ||||
|     self._momentum    = momentum | ||||
|  | ||||
|   def update(self, value): | ||||
|     self._numerator = self._momentum * self._numerator + (1 - self._momentum) * value | ||||
|     self._denominator = self._momentum * self._denominator + (1 - self._momentum) | ||||
|  | ||||
|   def value(self): | ||||
|     """Return the current value of the moving average""" | ||||
|     return self._numerator / self._denominator | ||||
|  | ||||
|  | ||||
| def select_action(policy): | ||||
|   probs = policy() | ||||
|   m = Categorical(probs) | ||||
|   action = m.sample() | ||||
|   # policy.saved_log_probs.append(m.log_prob(action)) | ||||
|   return m.log_prob(action), action.cpu().tolist() | ||||
|  | ||||
|  | ||||
| def main(xargs, api): | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled   = True | ||||
|   torch.backends.cudnn.benchmark = False | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads(xargs.workers) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|    | ||||
|    | ||||
|   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||
|   if xargs.search_space == 'tss': | ||||
|     policy = PolicyTopology(search_space) | ||||
|   else: | ||||
|     policy = PolicySize(search_space) | ||||
|   optimizer = torch.optim.Adam(policy.parameters(), lr=xargs.learning_rate) | ||||
|   #optimizer = torch.optim.SGD(policy.parameters(), lr=xargs.learning_rate) | ||||
|   eps       = np.finfo(np.float32).eps.item() | ||||
|   baseline  = ExponentialMovingAverage(xargs.EMA_momentum) | ||||
|   logger.log('policy    : {:}'.format(policy)) | ||||
|   logger.log('optimizer : {:}'.format(optimizer)) | ||||
|   logger.log('eps       : {:}'.format(eps)) | ||||
|  | ||||
|   # nas dataset load | ||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||
|  | ||||
|   # REINFORCE | ||||
|   x_start_time = time.time() | ||||
|   logger.log('Will start searching with time budget of {:} s.'.format(xargs.time_budget)) | ||||
|   total_steps, total_costs, trace = 0, [], [] | ||||
|   while len(total_costs) == 0 or total_costs[-1] < xargs.time_budget: | ||||
|     start_time = time.time() | ||||
|     log_prob, action = select_action( policy ) | ||||
|     arch   = policy.generate_arch( action ) | ||||
|     reward, _, current_total_cost = api.simulate_train_eval(arch, xargs.dataset, '12') | ||||
|     trace.append((reward, arch)) | ||||
|     total_costs.append(current_total_cost) | ||||
|  | ||||
|     baseline.update(reward) | ||||
|     # calculate loss | ||||
|     policy_loss = ( -log_prob * (reward - baseline.value()) ).sum() | ||||
|     optimizer.zero_grad() | ||||
|     policy_loss.backward() | ||||
|     optimizer.step() | ||||
|     # accumulate time | ||||
|     total_steps += 1 | ||||
|     logger.log('step [{:3d}] : average-reward={:.3f} : policy_loss={:.4f} : {:}'.format(total_steps, baseline.value(), policy_loss.item(), policy.genotype())) | ||||
|     #logger.log('----> {:}'.format(policy.arch_parameters)) | ||||
|     #logger.log('') | ||||
|  | ||||
|   # best_arch = policy.genotype() # first version | ||||
|   best_arch = max(trace, key=lambda x: x[0])[1] | ||||
|   logger.log('REINFORCE finish with {:} steps and {:.1f} s (real cost={:.3f}).'.format(total_steps, total_costs[-1], time.time()-x_start_time)) | ||||
|   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||
|   logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|   logger.close() | ||||
|  | ||||
|   return logger.log_dir, [api.query_index_by_arch(x[0]) for x in trace], total_costs | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("The REINFORCE Algorithm") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   parser.add_argument('--search_space',       type=str,   choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   parser.add_argument('--learning_rate',      type=float, help='The learning rate for REINFORCE.') | ||||
|   parser.add_argument('--EMA_momentum',       type=float, default=0.9, help='The momentum value for EMA.') | ||||
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') | ||||
|   parser.add_argument('--loops_if_rand',      type=int,   default=500, help='The total runs for evaluation.') | ||||
|   # log | ||||
|   parser.add_argument('--workers',            type=int,   default=2,   help='number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--save_dir',           type=str,   default='./output/search', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--arch_nas_dataset',   type=str,   help='The path to load the architecture dataset (tiny-nas-benchmark).') | ||||
|   parser.add_argument('--print_freq',         type=int,   help='print frequency (default: 200)') | ||||
|   parser.add_argument('--rand_seed',          type=int,   default=-1,  help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   if args.search_space == 'tss': | ||||
|     api = NASBench201API(verbose=False) | ||||
|   elif args.search_space == 'sss': | ||||
|     api = NASBench301API(verbose=False) | ||||
|   else: | ||||
|     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||
|  | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'REINFORCE-{:}'.format(args.learning_rate)) | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info = None, {} | ||||
|     for i in range(args.loops_if_rand): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|       save_dir, all_archs, all_total_times = main(args, api) | ||||
|       all_info[i] = {'all_archs': all_archs, | ||||
|                      'all_total_times': all_total_times} | ||||
|     save_path = save_dir / 'results.pth' | ||||
|     print('save into {:}'.format(save_path)) | ||||
|     torch.save(all_info, save_path) | ||||
|   else: | ||||
|     main(args, api) | ||||
		Reference in New Issue
	
	Block a user