Fix bugs in TAS: missing ReLU in the end of each searching block

This commit is contained in:
D-X-Y 2020-04-09 06:19:31 +00:00
parent 569b9b406a
commit 076f9c2d41
9 changed files with 108 additions and 13 deletions

View File

@ -0,0 +1,59 @@
###############################################################
# NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) #
###############################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
###############################################################
# Usage: python exps/NAS-Bench-201/xshape-file.py --mode check
###############################################################
import os, sys, time, torch, argparse
from typing import List, Text, Dict, Any
from tqdm import tqdm
from collections import defaultdict
from copy import deepcopy
from pathlib import Path
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
from config_utils import dict2config, load_config
from procedures import bench_evaluate_for_seed
from procedures import get_machine_info
from datasets import get_datasets
from log_utils import Logger, AverageMeter, time_string, convert_secs2time
def obtain_valid_ckp(save_dir: Text, total: int):
possible_seeds = [777, 888]
seed2ckps = defaultdict(list)
miss2ckps = defaultdict(list)
for i in range(total):
for seed in possible_seeds:
path = os.path.join(save_dir, 'arch-{:06d}-seed-{:04d}.pth'.format(i, seed))
if os.path.exists(path):
seed2ckps[seed].append(i)
else:
miss2ckps[seed].append(i)
"""
ckps = [x for x in save_dir.glob('arch-{:06d}-seed-*.pth'.format(i))]
for ckp in ckps:
seed = ckp.name.split('-seed-')[-1].split('.pth')[0]
seed2ckps[int(seed)].append(i)
"""
for seed, xlist in seed2ckps.items():
print('[{:}] [seed={:}] has {:}/{:}'.format(save_dir, seed, len(xlist), total))
return dict(seed2ckps), dict(miss2ckps)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--mode', type=str, required=True, choices=['check', 'copy'], help='The script mode.')
parser.add_argument('--save_dir', type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.')
parser.add_argument('--check_N', type=int, default=32768, help='For safety.')
# use for train the model
args = parser.parse_args()
possible_configs = ['01', '12', '90']
if args.mode == 'check':
for config in possible_configs:
cur_save_dir = '{:}/raw-data-{:}'.format(args.save_dir, config)
seed2ckps, miss2ckps = obtain_valid_ckp(cur_save_dir, args.check_N)
torch.save(dict(seed2ckps=seed2ckps, miss2ckps=miss2ckps), '{:}/meta-{:}.pth'.format(args.save_dir, config))

View File

@ -165,7 +165,7 @@ def filter_indexes(xlist, mode, save_dir, seeds):
if not temp_path.exists():
all_indexes.append(index)
break
print('{:} [FILTER-INDEXES] : there are {:} architectures in total'.format(time_string(), len(all_indexes)))
print('{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total'.format(time_string(), len(all_indexes), len(xlist)))
SLURM_PROCID, SLURM_NTASKS = 'SLURM_PROCID', 'SLURM_NTASKS'
if SLURM_PROCID in os.environ and SLURM_NTASKS in os.environ: # run on the slurm

View File

@ -15,8 +15,8 @@ OPS = {
'nor_conv_1x1' : lambda C_in, C_out, stride, affine, track_running_stats: ReLUConvBN(C_in, C_out, (1,1), (stride,stride), (0,0), (1,1), affine, track_running_stats),
'dua_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (3,3), (stride,stride), (1,1), (1,1), affine, track_running_stats),
'dua_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: DualSepConv(C_in, C_out, (5,5), (stride,stride), (2,2), (1,1), affine, track_running_stats),
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
'dil_sepc_3x3' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (3,3), (stride,stride), (2,2), (2,2), affine, track_running_stats),
'dil_sepc_5x5' : lambda C_in, C_out, stride, affine, track_running_stats: SepConv(C_in, C_out, (5,5), (stride,stride), (4,4), (2,2), affine, track_running_stats),
'skip_connect' : lambda C_in, C_out, stride, affine, track_running_stats: Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride, affine, track_running_stats),
}

View File

@ -172,7 +172,7 @@ class ResNetBasicblock(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
@ -244,8 +244,7 @@ class ResNetBottleneck(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
class SearchShapeCifarResNet(nn.Module):

View File

@ -156,7 +156,7 @@ class ResNetBasicblock(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
@ -228,8 +228,7 @@ class ResNetBottleneck(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
class SearchWidthCifarResNet(nn.Module):

View File

@ -171,7 +171,7 @@ class ResNetBasicblock(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_b)
return out, expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_inC_b, sum([expected_flop_a, expected_flop_b, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv_a(inputs)
@ -243,8 +243,7 @@ class ResNetBottleneck(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out_1x4)
return out, expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_inC_1x4, sum([expected_flop_1x1, expected_flop_3x3, expected_flop_1x4, expected_flop_c])
class SearchShapeImagenetResNet(nn.Module):

View File

@ -153,7 +153,7 @@ class SimBlock(nn.Module):
else:
residual, expected_flop_c = inputs, 0
out = additive_func(residual, out)
return out, expected_next_inC, sum([expected_flop, expected_flop_c])
return nn.functional.relu(out, inplace=True), expected_next_inC, sum([expected_flop, expected_flop_c])
def basic_forward(self, inputs):
basicblock = self.conv(inputs)

View File

@ -0,0 +1,36 @@
#!/bin/bash
#####################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
#####################################################
# bash ./scripts-search/X-X/train-shapes-01.sh 0 4
echo script name: $0
echo $# arguments
if [ "$#" -ne 2 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 2 parameters for hyper-parameters-opt-file, and seeds"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
srange=00000-32767
opt=01
all_seeds=777
cpus=4
save_dir=./output/NAS-BENCH-202/
SLURM_PROCID=$1 SLURM_NTASKS=$2 OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \
--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \
--datasets cifar10 cifar10 cifar100 ImageNet16-120 \
--splits 1 0 0 0 \
--xpaths $TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python \
$TORCH_HOME/cifar.python/ImageNet16 \
--workers ${cpus} \
--seeds ${all_seeds}

View File

@ -0,0 +1,3 @@
# 10 NAS algorithms in NAS-Bench-201
Each script in this folder corresponds to one NAS algorithm, you can simple run it by one command.