Update GeMOSA v4
This commit is contained in:
		@@ -5,6 +5,7 @@
 | 
			
		||||
# python exps/GeMOSA/main.py --env_version v1 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda
 | 
			
		||||
# python exps/GeMOSA/main.py --env_version v2 --lr 0.002 --hidden_dim 16 --meta_batch 256 --device cuda
 | 
			
		||||
# python exps/GeMOSA/main.py --env_version v3 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda
 | 
			
		||||
# python exps/GeMOSA/main.py --env_version v4 --lr 0.002 --hidden_dim 32 --time_dim 32 --meta_batch 256 --device cuda
 | 
			
		||||
#####################################################
 | 
			
		||||
import sys, time, copy, torch, random, argparse
 | 
			
		||||
from tqdm import tqdm
 | 
			
		||||
@@ -32,15 +33,24 @@ from xautodl.procedures.advanced_main import basic_train_fn, basic_eval_fn
 | 
			
		||||
from xautodl.procedures.metric_utils import SaveMetric, MSEMetric, ComposeMetric
 | 
			
		||||
from xautodl.datasets.synthetic_core import get_synthetic_env
 | 
			
		||||
from xautodl.models.xcore import get_model
 | 
			
		||||
from xautodl.xlayers import super_core, trunc_normal_
 | 
			
		||||
from xautodl.procedures.metric_utils import MSEMetric, Top1AccMetric
 | 
			
		||||
 | 
			
		||||
from meta_model import MetaModelV1
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def online_evaluate(
 | 
			
		||||
    env, meta_model, base_model, criterion, args, logger, save=False, easy_adapt=False
 | 
			
		||||
    env,
 | 
			
		||||
    meta_model,
 | 
			
		||||
    base_model,
 | 
			
		||||
    criterion,
 | 
			
		||||
    metric,
 | 
			
		||||
    args,
 | 
			
		||||
    logger,
 | 
			
		||||
    save=False,
 | 
			
		||||
    easy_adapt=False,
 | 
			
		||||
):
 | 
			
		||||
    logger.log("Online evaluate: {:}".format(env))
 | 
			
		||||
    metric.reset()
 | 
			
		||||
    loss_meter = AverageMeter()
 | 
			
		||||
    w_containers = dict()
 | 
			
		||||
    for idx, (future_time, (future_x, future_y)) in enumerate(env):
 | 
			
		||||
@@ -57,6 +67,8 @@ def online_evaluate(
 | 
			
		||||
            future_y_hat = base_model.forward_with_container(future_x, future_container)
 | 
			
		||||
            future_loss = criterion(future_y_hat, future_y)
 | 
			
		||||
            loss_meter.update(future_loss.item())
 | 
			
		||||
            # accumulate the metric scores
 | 
			
		||||
            metric(future_y_hat, future_y)
 | 
			
		||||
        if easy_adapt:
 | 
			
		||||
            meta_model.easy_adapt(future_time.item(), future_time_embed)
 | 
			
		||||
            refine, post_refine_loss = False, -1
 | 
			
		||||
@@ -79,7 +91,7 @@ def online_evaluate(
 | 
			
		||||
        )
 | 
			
		||||
    meta_model.clear_fixed()
 | 
			
		||||
    meta_model.clear_learnt()
 | 
			
		||||
    return w_containers, loss_meter
 | 
			
		||||
    return w_containers, loss_meter.avg, metric.get_info()["score"]
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def meta_train_procedure(base_model, meta_model, criterion, xenv, args, logger):
 | 
			
		||||
@@ -203,7 +215,16 @@ def main(args):
 | 
			
		||||
 | 
			
		||||
    base_model = get_model(**model_kwargs)
 | 
			
		||||
    base_model = base_model.to(args.device)
 | 
			
		||||
    criterion = torch.nn.MSELoss()
 | 
			
		||||
    if all_env.meta_info["task"] == "regression":
 | 
			
		||||
        criterion = torch.nn.MSELoss()
 | 
			
		||||
        metric = MSEMetric(True)
 | 
			
		||||
    elif all_env.meta_info["task"] == "classification":
 | 
			
		||||
        criterion = torch.nn.CrossEntropyLoss()
 | 
			
		||||
        metric = Top1AccMetric(True)
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError(
 | 
			
		||||
            "This task ({:}) is not supported.".format(all_env.meta_info["task"])
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    shape_container = base_model.get_w_container().to_shape_container()
 | 
			
		||||
 | 
			
		||||
@@ -235,27 +256,29 @@ def main(args):
 | 
			
		||||
    )
 | 
			
		||||
    logger.log("In this enviornment, the total loss-meter is {:}".format(loss_meter))
 | 
			
		||||
    """
 | 
			
		||||
    _, test_loss_meter_adapt_v1 = online_evaluate(
 | 
			
		||||
        valid_env, meta_model, base_model, criterion, args, logger, False, False
 | 
			
		||||
    _, loss_adapt_v1, metric_adapt_v1 = online_evaluate(
 | 
			
		||||
        valid_env, meta_model, base_model, criterion, metric, args, logger, False, False
 | 
			
		||||
    )
 | 
			
		||||
    _, test_loss_meter_adapt_v2 = online_evaluate(
 | 
			
		||||
        valid_env, meta_model, base_model, criterion, args, logger, False, True
 | 
			
		||||
    _, loss_adapt_v2, metric_adapt_v2 = online_evaluate(
 | 
			
		||||
        valid_env, meta_model, base_model, criterion, metric, args, logger, False, True
 | 
			
		||||
    )
 | 
			
		||||
    logger.log(
 | 
			
		||||
        "In the online test enviornment, the total loss for refine-adapt is {:}".format(
 | 
			
		||||
            test_loss_meter_adapt_v1
 | 
			
		||||
        "[Refine-Adapt] loss = {:.6f}, metric = {:.6f}".format(
 | 
			
		||||
            loss_adapt_v1, metric_adapt_v1
 | 
			
		||||
        )
 | 
			
		||||
    )
 | 
			
		||||
    logger.log(
 | 
			
		||||
        "In the online test enviornment, the total loss for easy-adapt is {:}".format(
 | 
			
		||||
            test_loss_meter_adapt_v2
 | 
			
		||||
        "[Easy-Adapt] loss = {:.6f}, metric = {:.6f}".format(
 | 
			
		||||
            loss_adapt_v2, metric_adapt_v2
 | 
			
		||||
        )
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    save_checkpoint(
 | 
			
		||||
        {
 | 
			
		||||
            "test_loss_adapt_v1": test_loss_meter_adapt_v1.avg,
 | 
			
		||||
            "test_loss_adapt_v2": test_loss_meter_adapt_v2.avg,
 | 
			
		||||
            "test_loss_adapt_v1": loss_adapt_v1,
 | 
			
		||||
            "test_loss_adapt_v2": loss_adapt_v2,
 | 
			
		||||
            "test_metric_adapt_v1": metric_adapt_v1,
 | 
			
		||||
            "test_metric_adapt_v2": metric_adapt_v2,
 | 
			
		||||
        },
 | 
			
		||||
        logger.path(None) / "final-ckp-{:}.pth".format(args.rand_seed),
 | 
			
		||||
        logger,
 | 
			
		||||
 
 | 
			
		||||
@@ -33,7 +33,9 @@ from xautodl.procedures.metric_utils import MSEMetric
 | 
			
		||||
 | 
			
		||||
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
 | 
			
		||||
    cur_ax.scatter([-100], [-100], color=color, linewidths=linewidths[0], label=label)
 | 
			
		||||
    cur_ax.scatter(xs, ys, color=color, alpha=alpha, linewidths=linewidths[1], label=None)
 | 
			
		||||
    cur_ax.scatter(
 | 
			
		||||
        xs, ys, color=color, alpha=alpha, linewidths=linewidths[1], label=None
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
 | 
			
		||||
@@ -193,16 +195,28 @@ def visualize_env(save_dir, version):
 | 
			
		||||
    for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
 | 
			
		||||
        allxs.append(allx)
 | 
			
		||||
        allys.append(ally)
 | 
			
		||||
    if dynamic_env.meta_info['task'] == 'regression':
 | 
			
		||||
    if dynamic_env.meta_info["task"] == "regression":
 | 
			
		||||
        allxs, allys = torch.cat(allxs).view(-1), torch.cat(allys).view(-1)
 | 
			
		||||
        print("x - min={:.3f}, max={:.3f}".format(allxs.min().item(), allxs.max().item()))
 | 
			
		||||
        print("y - min={:.3f}, max={:.3f}".format(allys.min().item(), allys.max().item()))
 | 
			
		||||
    elif dynamic_env.meta_info['task'] == 'classification':
 | 
			
		||||
        print(
 | 
			
		||||
            "x - min={:.3f}, max={:.3f}".format(allxs.min().item(), allxs.max().item())
 | 
			
		||||
        )
 | 
			
		||||
        print(
 | 
			
		||||
            "y - min={:.3f}, max={:.3f}".format(allys.min().item(), allys.max().item())
 | 
			
		||||
        )
 | 
			
		||||
    elif dynamic_env.meta_info["task"] == "classification":
 | 
			
		||||
        allxs = torch.cat(allxs)
 | 
			
		||||
        print("x[0] - min={:.3f}, max={:.3f}".format(allxs[:,0].min().item(), allxs[:,0].max().item()))
 | 
			
		||||
        print("x[1] - min={:.3f}, max={:.3f}".format(allxs[:,1].min().item(), allxs[:,1].max().item()))
 | 
			
		||||
        print(
 | 
			
		||||
            "x[0] - min={:.3f}, max={:.3f}".format(
 | 
			
		||||
                allxs[:, 0].min().item(), allxs[:, 0].max().item()
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
        print(
 | 
			
		||||
            "x[1] - min={:.3f}, max={:.3f}".format(
 | 
			
		||||
                allxs[:, 1].min().item(), allxs[:, 1].max().item()
 | 
			
		||||
            )
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        raise ValueError("Unknown task".format(dynamic_env.meta_info['task']))
 | 
			
		||||
        raise ValueError("Unknown task".format(dynamic_env.meta_info["task"]))
 | 
			
		||||
 | 
			
		||||
    for idx, (timestamp, (allx, ally)) in enumerate(tqdm(dynamic_env, ncols=50)):
 | 
			
		||||
        dpi, width, height = 30, 1800, 1400
 | 
			
		||||
@@ -211,29 +225,51 @@ def visualize_env(save_dir, version):
 | 
			
		||||
        fig = plt.figure(figsize=figsize)
 | 
			
		||||
 | 
			
		||||
        cur_ax = fig.add_subplot(1, 1, 1)
 | 
			
		||||
        if dynamic_env.meta_info['task'] == 'regression':
 | 
			
		||||
        if dynamic_env.meta_info["task"] == "regression":
 | 
			
		||||
            allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
 | 
			
		||||
            plot_scatter(cur_ax, allx, ally, "k", 0.99, (15, 1.5), "timestamp={:05d}".format(idx))
 | 
			
		||||
            plot_scatter(
 | 
			
		||||
                cur_ax, allx, ally, "k", 0.99, (15, 1.5), "timestamp={:05d}".format(idx)
 | 
			
		||||
            )
 | 
			
		||||
            cur_ax.set_xlim(round(allxs.min().item(), 1), round(allxs.max().item(), 1))
 | 
			
		||||
            cur_ax.set_ylim(round(allys.min().item(), 1), round(allys.max().item(), 1))
 | 
			
		||||
        elif dynamic_env.meta_info['task'] == 'classification':
 | 
			
		||||
        elif dynamic_env.meta_info["task"] == "classification":
 | 
			
		||||
            positive, negative = ally == 1, ally == 0
 | 
			
		||||
            # plot_scatter(cur_ax, [1], [1], "k", 0.1, 1, "timestamp={:05d}".format(idx))
 | 
			
		||||
            plot_scatter(cur_ax, allx[positive,0], allx[positive,1], "r", 0.99, (20, 10), "positive")
 | 
			
		||||
            plot_scatter(cur_ax, allx[negative,0], allx[negative,1], "g", 0.99, (20, 10), "negative")
 | 
			
		||||
            cur_ax.set_xlim(round(allxs[:,0].min().item(), 1), round(allxs[:,0].max().item(), 1))
 | 
			
		||||
            cur_ax.set_ylim(round(allxs[:,1].min().item(), 1), round(allxs[:,1].max().item(), 1))
 | 
			
		||||
            plot_scatter(
 | 
			
		||||
                cur_ax,
 | 
			
		||||
                allx[positive, 0],
 | 
			
		||||
                allx[positive, 1],
 | 
			
		||||
                "r",
 | 
			
		||||
                0.99,
 | 
			
		||||
                (20, 10),
 | 
			
		||||
                "positive",
 | 
			
		||||
            )
 | 
			
		||||
            plot_scatter(
 | 
			
		||||
                cur_ax,
 | 
			
		||||
                allx[negative, 0],
 | 
			
		||||
                allx[negative, 1],
 | 
			
		||||
                "g",
 | 
			
		||||
                0.99,
 | 
			
		||||
                (20, 10),
 | 
			
		||||
                "negative",
 | 
			
		||||
            )
 | 
			
		||||
            cur_ax.set_xlim(
 | 
			
		||||
                round(allxs[:, 0].min().item(), 1), round(allxs[:, 0].max().item(), 1)
 | 
			
		||||
            )
 | 
			
		||||
            cur_ax.set_ylim(
 | 
			
		||||
                round(allxs[:, 1].min().item(), 1), round(allxs[:, 1].max().item(), 1)
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            raise ValueError("Unknown task".format(dynamic_env.meta_info['task']))
 | 
			
		||||
            raise ValueError("Unknown task".format(dynamic_env.meta_info["task"]))
 | 
			
		||||
 | 
			
		||||
        cur_ax.set_xlabel("X", fontsize=LabelSize)
 | 
			
		||||
        cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
 | 
			
		||||
        for tick in cur_ax.xaxis.get_major_ticks():
 | 
			
		||||
                tick.label.set_fontsize(LabelSize - font_gap)
 | 
			
		||||
                tick.label.set_rotation(10)
 | 
			
		||||
            tick.label.set_fontsize(LabelSize - font_gap)
 | 
			
		||||
            tick.label.set_rotation(10)
 | 
			
		||||
        for tick in cur_ax.yaxis.get_major_ticks():
 | 
			
		||||
                tick.label.set_fontsize(LabelSize - font_gap)
 | 
			
		||||
        cur_ax.legend(loc=1, fontsize=LegendFontsize)   
 | 
			
		||||
            tick.label.set_fontsize(LabelSize - font_gap)
 | 
			
		||||
        cur_ax.legend(loc=1, fontsize=LegendFontsize)
 | 
			
		||||
        pdf_save_path = (
 | 
			
		||||
            save_dir
 | 
			
		||||
            / "pdf-{:}".format(version)
 | 
			
		||||
 
 | 
			
		||||
@@ -98,21 +98,53 @@ class ComposeMetric(Metric):
 | 
			
		||||
class MSEMetric(Metric):
 | 
			
		||||
    """The metric for mse."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, ignore_batch):
 | 
			
		||||
        super(MSEMetric, self).__init__()
 | 
			
		||||
        self._ignore_batch = ignore_batch
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
        self._mse = AverageMeter()
 | 
			
		||||
 | 
			
		||||
    def __call__(self, predictions, targets):
 | 
			
		||||
        if isinstance(predictions, torch.Tensor) and isinstance(targets, torch.Tensor):
 | 
			
		||||
            batch = predictions.shape[0]
 | 
			
		||||
            loss = torch.nn.functional.mse_loss(predictions.data, targets.data)
 | 
			
		||||
            loss = loss.item()
 | 
			
		||||
            self._mse.update(loss, batch)
 | 
			
		||||
            loss = torch.nn.functional.mse_loss(predictions.data, targets.data).item()
 | 
			
		||||
            if self._ignore_batch:
 | 
			
		||||
                self._mse.update(loss, 1)
 | 
			
		||||
            else:
 | 
			
		||||
                self._mse.update(loss, predictions.shape[0])
 | 
			
		||||
            return loss
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError
 | 
			
		||||
 | 
			
		||||
    def get_info(self):
 | 
			
		||||
        return {"mse": self._mse.avg}
 | 
			
		||||
        return {"mse": self._mse.avg, "score": self._mse.avg}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Top1AccMetric(Metric):
 | 
			
		||||
    """The metric for the top-1 accuracy."""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, ignore_batch):
 | 
			
		||||
        super(Top1AccMetric, self).__init__()
 | 
			
		||||
        self._ignore_batch = ignore_batch
 | 
			
		||||
 | 
			
		||||
    def reset(self):
 | 
			
		||||
        self._accuracy = AverageMeter()
 | 
			
		||||
 | 
			
		||||
    def __call__(self, predictions, targets):
 | 
			
		||||
        if isinstance(predictions, torch.Tensor) and isinstance(targets, torch.Tensor):
 | 
			
		||||
            max_prob_indexes = torch.argmax(predictions, dim=-1)
 | 
			
		||||
            corrects = torch.eq(max_prob_indexes, targets)
 | 
			
		||||
            accuracy = corrects.float().mean().float()
 | 
			
		||||
            if self._ignore_batch:
 | 
			
		||||
                self._accuracy.update(accuracy, 1)
 | 
			
		||||
            else:  # [TODO] for 3-d tensor
 | 
			
		||||
                self._accuracy.update(accuracy, predictions.shape[0])
 | 
			
		||||
            return accuracy
 | 
			
		||||
        else:
 | 
			
		||||
            raise NotImplementedError
 | 
			
		||||
 | 
			
		||||
    def get_info(self):
 | 
			
		||||
        return {"accuracy": self._accuracy.avg, "score": self._accuracy.avg * 100}
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SaveMetric(Metric):
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user