Update LFNA
This commit is contained in:
		| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 16 | ||||
| # python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 64 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -33,7 +33,7 @@ from lfna_models import HyperNet | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|     model = get_model(**model_kwargs) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
| @@ -72,7 +72,7 @@ def main(args): | ||||
|         ) | ||||
|  | ||||
|         limit_bar = float(iepoch + 1) / args.epochs * total_bar | ||||
|         limit_bar = min(max(0, int(limit_bar)), total_bar) | ||||
|         limit_bar = min(max(32, int(limit_bar)), total_bar) | ||||
|         losses = [] | ||||
|         for ibatch in range(args.meta_batch): | ||||
|             cur_time = random.randint(0, limit_bar) | ||||
|   | ||||
| @@ -1,7 +1,7 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 # | ||||
| ##################################################### | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 | ||||
| # python exps/LFNA/lfna-test-hpnet.py --env_version v1 --hidden_dim 16 --layer_dim 32 --epochs 50000 | ||||
| ##################################################### | ||||
| import sys, time, copy, torch, random, argparse | ||||
| from tqdm import tqdm | ||||
| @@ -33,17 +33,17 @@ from lfna_models import HyperNet | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|     model = get_model(**model_kwargs) | ||||
|     model = model.to(args.device) | ||||
|     criterion = torch.nn.MSELoss() | ||||
|  | ||||
|     logger.log("There are {:} weights.".format(model.get_w_container().numel())) | ||||
|  | ||||
|     shape_container = model.get_w_container().to_shape_container() | ||||
|     hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim) | ||||
|     hypernet = HyperNet(shape_container, args.layer_dim, args.task_dim) | ||||
|     hypernet = hypernet.to(args.device) | ||||
|     # task_embed = torch.nn.Parameter(torch.Tensor(env_info["total"], args.task_dim)) | ||||
|     total_bar = 10 | ||||
|     total_bar = 16 | ||||
|     task_embeds = [] | ||||
|     for i in range(total_bar): | ||||
|         tensor = torch.Tensor(1, args.task_dim).to(args.device) | ||||
| @@ -51,8 +51,12 @@ def main(args): | ||||
|     for task_embed in task_embeds: | ||||
|         trunc_normal_(task_embed, std=0.02) | ||||
|  | ||||
|     model.train() | ||||
|     hypernet.train() | ||||
|  | ||||
|     parameters = list(hypernet.parameters()) + task_embeds | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     # optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True) | ||||
|     optimizer = torch.optim.Adam(parameters, lr=args.init_lr, weight_decay=1e-5) | ||||
|     lr_scheduler = torch.optim.lr_scheduler.MultiStepLR( | ||||
|         optimizer, | ||||
|         milestones=[ | ||||
| @@ -98,7 +102,7 @@ def main(args): | ||||
|         lr_scheduler.step() | ||||
|  | ||||
|         loss_meter.update(final_loss.item()) | ||||
|         if iepoch % 200 == 0: | ||||
|         if iepoch % 100 == 0: | ||||
|             logger.log( | ||||
|                 head_str | ||||
|                 + " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format( | ||||
| @@ -126,6 +130,26 @@ def main(args): | ||||
|     print(model) | ||||
|     print(hypernet) | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     for idx in range(0, total_bar): | ||||
|         future_time = env_info["{:}-timestamp".format(idx)] | ||||
|         future_x = env_info["{:}-x".format(idx)] | ||||
|         future_y = env_info["{:}-y".format(idx)] | ||||
|         future_container = hypernet(task_embeds[idx]) | ||||
|         w_container_per_epoch[idx] = future_container.no_grad_clone() | ||||
|         with torch.no_grad(): | ||||
|             future_y_hat = model.forward_with_container( | ||||
|                 future_x, w_container_per_epoch[idx] | ||||
|             ) | ||||
|             future_loss = criterion(future_y_hat, future_y) | ||||
|         logger.log("meta-test: [{:03d}] -> loss={:.4f}".format(idx, future_loss.item())) | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
|  | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
| @@ -150,6 +174,12 @@ if __name__ == "__main__": | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--layer_dim", | ||||
|         type=int, | ||||
|         required=True, | ||||
|         help="The hidden dimension.", | ||||
|     ) | ||||
|     ##### | ||||
|     parser.add_argument( | ||||
|         "--init_lr", | ||||
| @@ -181,7 +211,7 @@ if __name__ == "__main__": | ||||
|     if args.rand_seed is None or args.rand_seed < 0: | ||||
|         args.rand_seed = random.randint(1, 100000) | ||||
|     assert args.save_dir is not None, "The save dir argument can not be None" | ||||
|     args.task_dim = args.hidden_dim | ||||
|     args.task_dim = args.layer_dim | ||||
|     args.save_dir = "{:}-{:}-d{:}".format( | ||||
|         args.save_dir, args.env_version, args.hidden_dim | ||||
|     ) | ||||
|   | ||||
| @@ -31,7 +31,7 @@ from lfna_models import HyperNet_VX as HyperNet | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     dynamic_env = env_info["dynamic_env"] | ||||
|     model = get_model(dict(model_type="simple_mlp"), **model_kwargs) | ||||
|     model = get_model(**model_kwargs) | ||||
|  | ||||
|     total_time = env_info["total"] | ||||
|     for i in range(total_time): | ||||
|   | ||||
| @@ -4,6 +4,8 @@ | ||||
| import copy | ||||
| import torch | ||||
|  | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| from xlayers import super_core | ||||
| from xlayers import trunc_normal_ | ||||
| from models.xcore import get_model | ||||
| @@ -29,13 +31,15 @@ class HyperNet(super_core.SuperModule): | ||||
|         trunc_normal_(self._super_layer_embed, std=0.02) | ||||
|  | ||||
|         model_kwargs = dict( | ||||
|             config=dict(model_type="dual_norm_mlp"), | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
|             output_dim=max(self._numel_per_layer), | ||||
|             hidden_dims=[layer_embeding * 4] * 4, | ||||
|             hidden_dims=[layer_embeding * 4] * 3, | ||||
|             act_cls="gelu", | ||||
|             norm_cls="layer_norm_1d", | ||||
|             dropout=0.1, | ||||
|         ) | ||||
|         self._generator = get_model(dict(model_type="norm_mlp"), **model_kwargs) | ||||
|         self._generator = get_model(**model_kwargs) | ||||
|         """ | ||||
|         model_kwargs = dict( | ||||
|             input_dim=layer_embeding + task_embedding, | ||||
| @@ -50,8 +54,12 @@ class HyperNet(super_core.SuperModule): | ||||
|         print("generator: {:}".format(self._generator)) | ||||
|  | ||||
|     def forward_raw(self, task_embed): | ||||
|         # task_embed = F.normalize(task_embed, dim=-1, p=2) | ||||
|         # layer_embed = F.normalize(self._super_layer_embed, dim=-1, p=2) | ||||
|         layer_embed = self._super_layer_embed | ||||
|         task_embed = task_embed.view(1, -1).expand(self._num_layers, -1) | ||||
|         joint_embed = torch.cat((task_embed, self._super_layer_embed), dim=-1) | ||||
|  | ||||
|         joint_embed = torch.cat((task_embed, layer_embed), dim=-1) | ||||
|         weights = self._generator(joint_embed) | ||||
|         if self._return_container: | ||||
|             weights = torch.split(weights, 1) | ||||
|   | ||||
| @@ -11,6 +11,7 @@ __all__ = ["get_model"] | ||||
|  | ||||
| from xlayers.super_core import SuperSequential | ||||
| from xlayers.super_core import SuperLinear | ||||
| from xlayers.super_core import SuperDropout | ||||
| from xlayers.super_core import super_name2norm | ||||
| from xlayers.super_core import super_name2activation | ||||
|  | ||||
| @@ -47,7 +48,20 @@ def get_model(config: Dict[Text, Any], **kwargs): | ||||
|             last_dim = hidden_dim | ||||
|         sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"])) | ||||
|         model = SuperSequential(*sub_layers) | ||||
|  | ||||
|     elif model_type == "dual_norm_mlp": | ||||
|         act_cls = super_name2activation[kwargs["act_cls"]] | ||||
|         norm_cls = super_name2norm[kwargs["norm_cls"]] | ||||
|         sub_layers, last_dim = [], kwargs["input_dim"] | ||||
|         for i, hidden_dim in enumerate(kwargs["hidden_dims"]): | ||||
|             if i > 0: | ||||
|                 sub_layers.append(norm_cls(last_dim, elementwise_affine=False)) | ||||
|             sub_layers.append(SuperLinear(last_dim, hidden_dim)) | ||||
|             sub_layers.append(SuperDropout(kwargs["dropout"])) | ||||
|             sub_layers.append(SuperLinear(hidden_dim, hidden_dim)) | ||||
|             sub_layers.append(act_cls()) | ||||
|             last_dim = hidden_dim | ||||
|         sub_layers.append(SuperLinear(last_dim, kwargs["output_dim"])) | ||||
|         model = SuperSequential(*sub_layers) | ||||
|     else: | ||||
|         raise TypeError("Unkonwn model type: {:}".format(model_type)) | ||||
|     return model | ||||
|   | ||||
| @@ -14,6 +14,7 @@ from .super_norm import SuperSimpleNorm | ||||
| from .super_norm import SuperLayerNorm1D | ||||
| from .super_norm import SuperSimpleLearnableNorm | ||||
| from .super_norm import SuperIdentity | ||||
| from .super_dropout import SuperDropout | ||||
|  | ||||
| super_name2norm = { | ||||
|     "simple_norm": SuperSimpleNorm, | ||||
|   | ||||
							
								
								
									
										40
									
								
								lib/xlayers/super_dropout.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								lib/xlayers/super_dropout.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,40 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| import torch.nn.functional as F | ||||
|  | ||||
| import math | ||||
| from typing import Optional, Callable | ||||
|  | ||||
| import spaces | ||||
| from .super_module import SuperModule | ||||
| from .super_module import IntSpaceType | ||||
| from .super_module import BoolSpaceType | ||||
|  | ||||
|  | ||||
| class SuperDropout(SuperModule): | ||||
|     """Applies a the dropout function element-wise.""" | ||||
|  | ||||
|     def __init__(self, p: float = 0.5, inplace: bool = False) -> None: | ||||
|         super(SuperDropout, self).__init__() | ||||
|         self._p = p | ||||
|         self._inplace = inplace | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         return spaces.VirtualNode(id(self)) | ||||
|  | ||||
|     def forward_candidate(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return F.dropout(input, self._p, self.training, self._inplace) | ||||
|  | ||||
|     def forward_with_container(self, input, container, prefix=[]): | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         xstr = "inplace=True" if self._inplace else "" | ||||
|         return "p={:}".format(self._p) + ", " + xstr | ||||
| @@ -74,6 +74,19 @@ class SuperLayerNorm1D(SuperModule): | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         return F.layer_norm(input, (self.in_dim,), self.weight, self.bias, self.eps) | ||||
|  | ||||
|     def forward_with_container(self, input, container, prefix=[]): | ||||
|         super_weight_name = ".".join(prefix + ["weight"]) | ||||
|         if container.has(super_weight_name): | ||||
|             weight = container.query(super_weight_name) | ||||
|         else: | ||||
|             weight = None | ||||
|         super_bias_name = ".".join(prefix + ["bias"]) | ||||
|         if container.has(super_bias_name): | ||||
|             bias = container.query(super_bias_name) | ||||
|         else: | ||||
|             bias = None | ||||
|         return F.layer_norm(input, (self.in_dim,), weight, bias, self.eps) | ||||
|  | ||||
|     def extra_repr(self) -> str: | ||||
|         return ( | ||||
|             "shape={in_dim}, eps={eps}, elementwise_affine={elementwise_affine}".format( | ||||
|   | ||||
		Reference in New Issue
	
	Block a user