update README
This commit is contained in:
		| @@ -20,6 +20,8 @@ In this paper, we proposed a differentiable searching strategy for transformable | |||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | ||||||
|  |  | ||||||
|  | ### Usage | ||||||
|  |  | ||||||
| Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | Use `bash ./scripts/prepare.sh` to prepare data splits for `CIFAR-10`, `CIFARR-100`, and `ILSVRC2012`. | ||||||
| If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`. | If you do not have `ILSVRC2012` data, pleasee comment L12 in `./scripts/prepare.sh`. | ||||||
|  |  | ||||||
| @@ -43,8 +45,11 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n | |||||||
|  |  | ||||||
| ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ||||||
|  |  | ||||||
|  | Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | <img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||||
|  |  | ||||||
|  | ### Usage | ||||||
| Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | Train the searched SETN-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  SETN 96 -1 | ||||||
| @@ -57,10 +62,13 @@ Searching codes come soon! | |||||||
|  |  | ||||||
| ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ||||||
|  |  | ||||||
|  | We proposed a gradient-based searching algorithm using differentiable architecture sampling (improving DARTS with Gumbel-softmax sampling). | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="350"> | <img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="350"> | ||||||
|  |  | ||||||
| The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | ||||||
|  |  | ||||||
|  | ### Usage | ||||||
| Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | Train the searched GDAS-searched CNN on CIFAR-10, CIFAR-100, and ImageNet. | ||||||
| ``` | ``` | ||||||
| CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  GDAS_V1 96 -1 | CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar10  GDAS_V1 96 -1 | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user