Updates
This commit is contained in:
		 Submodule .latent-data/qlib updated: 0a0c6a3185...419629e4d2
									
								
							| @@ -46,7 +46,7 @@ _default_max_depth = 5 | ||||
| DefaultSearchSpace = dict( | ||||
|     d_feat=6, | ||||
|     stem_dim=spaces.Categorical(*_get_list_mul(8, 16)), | ||||
|     embed_dims=_get_mul_specs(_get_list_mul(8, 16), _default_max_depth), | ||||
|     embed_dim=spaces.Categorical(*_get_list_mul(8, 16)), | ||||
|     num_heads=_get_mul_specs((1, 2, 4, 8), _default_max_depth), | ||||
|     mlp_hidden_multipliers=_get_mul_specs((0.5, 1, 2, 4, 8), _default_max_depth), | ||||
|     qkv_bias=True, | ||||
| @@ -62,7 +62,7 @@ class SuperTransformer(super_core.SuperModule): | ||||
|         self, | ||||
|         d_feat: int = 6, | ||||
|         stem_dim: super_core.IntSpaceType = DefaultSearchSpace["stem_dim"], | ||||
|         embed_dims: List[super_core.IntSpaceType] = DefaultSearchSpace["embed_dims"], | ||||
|         embed_dim: List[super_core.IntSpaceType] = DefaultSearchSpace["embed_dim"], | ||||
|         num_heads: List[super_core.IntSpaceType] = DefaultSearchSpace["num_heads"], | ||||
|         mlp_hidden_multipliers: List[super_core.IntSpaceType] = DefaultSearchSpace[ | ||||
|             "mlp_hidden_multipliers" | ||||
| @@ -73,7 +73,7 @@ class SuperTransformer(super_core.SuperModule): | ||||
|         max_seq_len: int = 65, | ||||
|     ): | ||||
|         super(SuperTransformer, self).__init__() | ||||
|         self._embed_dims = embed_dims | ||||
|         self._embed_dim = embed_dim | ||||
|         self._stem_dim = stem_dim | ||||
|         self._num_heads = num_heads | ||||
|         self._mlp_hidden_multipliers = mlp_hidden_multipliers | ||||
| @@ -85,22 +85,15 @@ class SuperTransformer(super_core.SuperModule): | ||||
|             d_model=stem_dim, max_seq_len=max_seq_len, dropout=pos_drop | ||||
|         ) | ||||
|         # build the transformer encode layers -->> check params | ||||
|         _assert_types(embed_dims, (tuple, list)) | ||||
|         _assert_types(num_heads, (tuple, list)) | ||||
|         _assert_types(mlp_hidden_multipliers, (tuple, list)) | ||||
|         num_layers = len(embed_dims) | ||||
|         assert ( | ||||
|             num_layers == len(num_heads) == len(mlp_hidden_multipliers) | ||||
|         ), "{:} vs {:} vs {:}".format( | ||||
|             num_layers, len(num_heads), len(mlp_hidden_multipliers) | ||||
|         assert len(num_heads) == len(mlp_hidden_multipliers), "{:} vs {:}".format( | ||||
|             len(num_heads), len(mlp_hidden_multipliers) | ||||
|         ) | ||||
|         # build the transformer encode layers -->> backbone | ||||
|         layers, input_dim = [], stem_dim | ||||
|         for embed_dim, num_head, mlp_hidden_multiplier in zip( | ||||
|             embed_dims, num_heads, mlp_hidden_multipliers | ||||
|         ): | ||||
|         layers = [] | ||||
|         for num_head, mlp_hidden_multiplier in zip(num_heads, mlp_hidden_multipliers): | ||||
|             layer = super_core.SuperTransformerEncoderLayer( | ||||
|                 input_dim, | ||||
|                 embed_dim, | ||||
|                 num_head, | ||||
|                 qkv_bias, | ||||
| @@ -108,11 +101,12 @@ class SuperTransformer(super_core.SuperModule): | ||||
|                 other_drop, | ||||
|             ) | ||||
|             layers.append(layer) | ||||
|             input_dim = embed_dim | ||||
|         self.backbone = super_core.SuperSequential(*layers) | ||||
|  | ||||
|         # the regression head | ||||
|         self.head = super_core.SuperLinear(self._embed_dims[-1], 1) | ||||
|         self.head = super_core.SuperSequential( | ||||
|             super_core.SuperLayerNorm1D(embed_dim), super_core.SuperLinear(embed_dim, 1) | ||||
|         ) | ||||
|         trunc_normal_(self.cls_token, std=0.02) | ||||
|         self.apply(self._init_weights) | ||||
|  | ||||
| @@ -123,14 +117,16 @@ class SuperTransformer(super_core.SuperModule): | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
|         root_node = spaces.VirtualNode(id(self)) | ||||
|         if not spaces.is_determined(self._stem_dim): | ||||
|             root_node.append("_stem_dim", self._stem_dim.abstract(reuse_last=True)) | ||||
|         if not spaces.is_determined(self._stem_dim): | ||||
|             root_node.append("_embed_dim", self._embed_dim.abstract(reuse_last=True)) | ||||
|         xdict = dict( | ||||
|             input_embed=self.input_embed.abstract_search_space, | ||||
|             pos_embed=self.pos_embed.abstract_search_space, | ||||
|             backbone=self.backbone.abstract_search_space, | ||||
|             head=self.head.abstract_search_space, | ||||
|         ) | ||||
|         if not spaces.is_determined(self._stem_dim): | ||||
|             root_node.append("_stem_dim", self._stem_dim.abstract(reuse_last=True)) | ||||
|         for key, space in xdict.items(): | ||||
|             if not spaces.is_determined(space): | ||||
|                 root_node.append(key, space) | ||||
| @@ -196,7 +192,7 @@ def get_transformer(config): | ||||
|         model = SuperTransformer( | ||||
|             d_feat=config.get("d_feat"), | ||||
|             stem_dim=config.get("stem_dim"), | ||||
|             embed_dims=config.get("embed_dims"), | ||||
|             embed_dim=config.get("embed_dim"), | ||||
|             num_heads=config.get("num_heads"), | ||||
|             mlp_hidden_multipliers=config.get("mlp_hidden_multipliers"), | ||||
|             qkv_bias=config.get("qkv_bias"), | ||||
|   | ||||
| @@ -3,6 +3,7 @@ | ||||
| ##################################################### | ||||
| from .super_module import SuperRunMode | ||||
| from .super_module import IntSpaceType | ||||
| from .super_module import LayerOrder | ||||
|  | ||||
| from .super_module import SuperModule | ||||
| from .super_container import SuperSequential | ||||
|   | ||||
| @@ -37,8 +37,7 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|  | ||||
|     def __init__( | ||||
|         self, | ||||
|         input_dim: IntSpaceType, | ||||
|         output_dim: IntSpaceType, | ||||
|         d_model: IntSpaceType, | ||||
|         num_heads: IntSpaceType, | ||||
|         qkv_bias: BoolSpaceType = False, | ||||
|         mlp_hidden_multiplier: IntSpaceType = 4, | ||||
| @@ -48,40 +47,37 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|     ): | ||||
|         super(SuperTransformerEncoderLayer, self).__init__() | ||||
|         mha = SuperAttention( | ||||
|             input_dim, | ||||
|             input_dim, | ||||
|             d_model, | ||||
|             d_model, | ||||
|             num_heads=num_heads, | ||||
|             qkv_bias=qkv_bias, | ||||
|             attn_drop=drop, | ||||
|             proj_drop=drop, | ||||
|         ) | ||||
|         drop1 = nn.Dropout(drop or 0.0) | ||||
|         norm1 = SuperLayerNorm1D(input_dim) | ||||
|         mlp = SuperMLPv2( | ||||
|             input_dim, | ||||
|             d_model, | ||||
|             hidden_multiplier=mlp_hidden_multiplier, | ||||
|             out_features=output_dim, | ||||
|             out_features=d_model, | ||||
|             act_layer=act_layer, | ||||
|             drop=drop, | ||||
|         ) | ||||
|         drop2 = nn.Dropout(drop or 0.0) | ||||
|         norm2 = SuperLayerNorm1D(output_dim) | ||||
|         if order is LayerOrder.PreNorm: | ||||
|             self.norm1 = norm1 | ||||
|             self.norm1 = SuperLayerNorm1D(d_model) | ||||
|             self.mha = mha | ||||
|             self.drop1 = drop1 | ||||
|             self.norm2 = norm2 | ||||
|             self.drop1 = nn.Dropout(drop or 0.0) | ||||
|             self.norm2 = SuperLayerNorm1D(d_model) | ||||
|             self.mlp = mlp | ||||
|             self.drop2 = drop2 | ||||
|         elif order is LayerOrder.PostNoem: | ||||
|             self.drop2 = nn.Dropout(drop or 0.0) | ||||
|         elif order is LayerOrder.PostNorm: | ||||
|             self.mha = mha | ||||
|             self.drop1 = drop1 | ||||
|             self.norm1 = norm1 | ||||
|             self.drop1 = nn.Dropout(drop or 0.0) | ||||
|             self.norm1 = SuperLayerNorm1D(d_model) | ||||
|             self.mlp = mlp | ||||
|             self.drop2 = drop2 | ||||
|             self.norm2 = norm2 | ||||
|             self.drop2 = nn.Dropout(drop or 0.0) | ||||
|             self.norm2 = SuperLayerNorm1D(d_model) | ||||
|         else: | ||||
|             raise ValueError("Unknown order: {:}".format(order)) | ||||
|         self._order = order | ||||
|  | ||||
|     @property | ||||
|     def abstract_search_space(self): | ||||
| @@ -108,18 +104,19 @@ class SuperTransformerEncoderLayer(SuperModule): | ||||
|         return self.forward_raw(input) | ||||
|  | ||||
|     def forward_raw(self, input: torch.Tensor) -> torch.Tensor: | ||||
|         if order is LayerOrder.PreNorm: | ||||
|         if self._order is LayerOrder.PreNorm: | ||||
|             x = self.norm1(input) | ||||
|             x = x + self.drop1(self.mha(x)) | ||||
|             x = self.norm2(x) | ||||
|             x = x + self.drop2(self.mlp(x)) | ||||
|         elif order is LayerOrder.PostNoem: | ||||
|         elif self._order is LayerOrder.PostNorm: | ||||
|             # multi-head attention | ||||
|             x = x + self.drop1(self.mha(input)) | ||||
|             x = self.mha(input) | ||||
|             x = x + self.drop1(x) | ||||
|             x = self.norm1(x) | ||||
|             # feed-forward layer | ||||
|             x = x + self.drop2(self.mlp(x)) | ||||
|             x = self.norm2(x) | ||||
|         else: | ||||
|             raise ValueError("Unknown order: {:}".format(order)) | ||||
|             raise ValueError("Unknown order: {:}".format(self._order)) | ||||
|         return x | ||||
|   | ||||
| @@ -53,11 +53,13 @@ class TestSuperAttention(unittest.TestCase): | ||||
|     @parameterized.expand([[6], [12], [24], [48]]) | ||||
|     def test_transformer_encoder(self, input_dim): | ||||
|         output_dim = spaces.Categorical(12, 24, 36) | ||||
|         model = super_core.SuperTransformerEncoderLayer( | ||||
|             input_dim, | ||||
|             output_dim=output_dim, | ||||
|         model = super_core.SuperSequential( | ||||
|             super_core.SuperLinear(input_dim, output_dim), | ||||
|             super_core.SuperTransformerEncoderLayer( | ||||
|                 output_dim, | ||||
|                 num_heads=spaces.Categorical(2, 4, 6), | ||||
|                 mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||
|             ), | ||||
|         ) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|   | ||||
| @@ -36,25 +36,31 @@ def _internal_func(inputs, model): | ||||
|     return abstract_child, outputs | ||||
|  | ||||
|  | ||||
| def _create_stel(input_dim, output_dim): | ||||
|     return super_core.SuperTransformerEncoderLayer( | ||||
|         input_dim, | ||||
| def _create_stel(input_dim, output_dim, order): | ||||
|     return super_core.SuperSequential( | ||||
|         super_core.SuperLinear(input_dim, output_dim), | ||||
|         super_core.SuperTransformerEncoderLayer( | ||||
|             output_dim, | ||||
|             num_heads=spaces.Categorical(2, 4, 6), | ||||
|             mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||
|             order=order, | ||||
|         ), | ||||
|     ) | ||||
|  | ||||
|  | ||||
| @pytest.mark.parametrize("batch", (1, 2, 4)) | ||||
| @pytest.mark.parametrize("seq_dim", (1, 10, 30)) | ||||
| @pytest.mark.parametrize("input_dim", (6, 12, 24, 27)) | ||||
| def test_super_sequential(batch, seq_dim, input_dim): | ||||
| @pytest.mark.parametrize( | ||||
|     "order", (super_core.LayerOrder.PreNorm, super_core.LayerOrder.PostNorm) | ||||
| ) | ||||
| def test_super_sequential(batch, seq_dim, input_dim, order): | ||||
|     out1_dim = spaces.Categorical(12, 24, 36) | ||||
|     out2_dim = spaces.Categorical(24, 36, 48) | ||||
|     out3_dim = spaces.Categorical(36, 72, 100) | ||||
|     layer1 = _create_stel(input_dim, out1_dim) | ||||
|     layer2 = _create_stel(out1_dim, out2_dim) | ||||
|     layer3 = _create_stel(out2_dim, out3_dim) | ||||
|     layer1 = _create_stel(input_dim, out1_dim, order) | ||||
|     layer2 = _create_stel(out1_dim, out2_dim, order) | ||||
|     layer3 = _create_stel(out2_dim, out3_dim, order) | ||||
|     model = super_core.SuperSequential(layer1, layer2, layer3) | ||||
|     print(model) | ||||
|     model.apply_verbose(True) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user