Update REA, REINFORCE, and RANDOM
This commit is contained in:
		
							
								
								
									
										180
									
								
								docs/NAS-Bench-201-PURE.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								docs/NAS-Bench-201-PURE.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,180 @@ | ||||
| # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||
|  | ||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||
| The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||
| Each edge here is associated with an operation selected from a predefined operation set. | ||||
| For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. | ||||
|  | ||||
| In this Markdown file, we provide: | ||||
| - [How to Use NAS-Bench-201](#how-to-use-nas-bench-201) | ||||
|  | ||||
| For the following two things, please use [AutoDL-Projects](https://github.com/D-X-Y/AutoDL-Projects): | ||||
| - [Instruction to re-generate NAS-Bench-201](#instruction-to-re-generate-nas-bench-201) | ||||
| - [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-201) | ||||
|  | ||||
| Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`. | ||||
|  | ||||
| You can simply type `pip install nas-bench-201` to install our api. Please see source codes of `nas-bench-201` module in [this repo](https://github.com/D-X-Y/NAS-Bench-201). | ||||
|  | ||||
| **If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/AutoDL-Projects/issues) or email me.** | ||||
|  | ||||
| ### Preparation and Download | ||||
|  | ||||
| [deprecated] The **old** benchmark file of NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/file/d/1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs/view?usp=sharing) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w). | ||||
|  | ||||
| [recommended] The **latest** benchmark file of NAS-Bench-201 (`NAS-Bench-201-v1_1-096897.pth`) can be downloaded from [Google Drive](https://drive.google.com/file/d/16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_/view?usp=sharing). The files for model weight are too large (431G) and I need some time to upload it. Please be patient, thanks for your understanding. | ||||
|  | ||||
| You can move it to anywhere you want and send its path to our API for initialization. | ||||
| - [2020.02.25] APIv1.0/FILEv1.0: [`NAS-Bench-201-v1_0-e61699.pth`](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) (2.2G), where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | ||||
| - [2020.02.25] APIv1.0/FILEv1.0: The full data of each architecture can be download from [ | ||||
| NAS-BENCH-201-4-v1.0-archive.tar](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights. | ||||
| - [2020.02.25] APIv1.0/FILEv1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi). | ||||
| - [2020.03.09] APIv1.2/FILEv1.0: More robust API with more functions and descriptions | ||||
| - [2020.03.16] APIv1.3/FILEv1.1: [`NAS-Bench-201-v1_1-096897.pth`](https://drive.google.com/open?id=16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_) (4.7G), where `096897` is the last six digits for this file. It contains information of more trials compared to `NAS-Bench-201-v1_0-e61699.pth`, especially all models trained by 12 epochs on all datasets are avaliable. | ||||
| - [2020.06.30] APIv2.0: Use abstract class (NASBenchMetaAPI) for APIs of NAS-Bench-x0y. | ||||
| - [2020.06.30] FILEv2.0: coming soon! | ||||
|  | ||||
| **We recommend to use `NAS-Bench-201-v1_1-096897.pth`** | ||||
|  | ||||
|  | ||||
| The training and evaluation data used in NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | ||||
| It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-201 or similar NAS datasets or training models by yourself, you need these data. | ||||
|  | ||||
| ## How to Use NAS-Bench-201 | ||||
|  | ||||
| **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/master/exps/NAS-Bench-201/test-nas-api.py)**. | ||||
|  | ||||
| 1. Creating an API instance from a file: | ||||
| ``` | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('$path_to_meta_nas_bench_file') | ||||
| # Create an API without the verbose log | ||||
| api = API('NAS-Bench-201-v1_1-096897.pth', verbose=False) | ||||
| # The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth') | ||||
| api = API(None) | ||||
| ``` | ||||
|  | ||||
| 2. Show the number of architectures `len(api)` and each architecture `api[i]`: | ||||
| ``` | ||||
| num = len(api) | ||||
| for i, arch_str in enumerate(api): | ||||
|   print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str)) | ||||
| ``` | ||||
|  | ||||
| 3. Show the results of all trials for a single architecture: | ||||
| ``` | ||||
| # show all information for a specific architecture | ||||
| api.show(1) | ||||
| api.show(2) | ||||
|  | ||||
| # show the mean loss and accuracy of an architecture | ||||
| info = api.query_meta_info_by_index(1)  # This is an instance of `ArchResults` | ||||
| res_metrics = info.get_metrics('cifar10', 'train') # This is a dict with metric names as keys | ||||
| cost_metrics = info.get_comput_costs('cifar100') # This is a dict with metric names as keys, e.g., flops, params, latency | ||||
|  | ||||
| # get the detailed information | ||||
| results = api.query_by_index(1, 'cifar100') # a dict of all trials for 1st net on cifar100, where the key is the seed | ||||
| print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1])) | ||||
| print ('Latency : {:}'.format(results[0].get_latency())) | ||||
| print ('Train Info : {:}'.format(results[0].get_train())) | ||||
| print ('Valid Info : {:}'.format(results[0].get_eval('x-valid'))) | ||||
| print ('Test  Info : {:}'.format(results[0].get_eval('x-test'))) | ||||
| # for the metric after a specific epoch | ||||
| print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10))) | ||||
| ``` | ||||
|  | ||||
| 4. Query the index of an architecture by string | ||||
| ``` | ||||
| index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|') | ||||
| api.show(index) | ||||
| ``` | ||||
| This string `|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|` means: | ||||
| ``` | ||||
| node-0: the input tensor | ||||
| node-1: conv-3x3( node-0 ) | ||||
| node-2: conv-3x3( node-0 ) + avg-pool-3x3( node-1 ) | ||||
| node-3: skip-connect( node-0 ) + conv-3x3( node-1 ) + skip-connect( node-2 ) | ||||
| ``` | ||||
|  | ||||
| 5. Create the network from api: | ||||
| ``` | ||||
| config = api.get_net_config(123, 'cifar10') # obtain the network configuration for the 123-th architecture on the CIFAR-10 dataset | ||||
| from models import get_cell_based_tiny_net # this module is in AutoDL-Projects/lib/models | ||||
| network = get_cell_based_tiny_net(config) # create the network from configurration | ||||
| print(network) # show the structure of this architecture | ||||
| ``` | ||||
| If you want to load the trained weights of this created network, you need to use `api.get_net_param(123, ...)` to obtain the weights and then load it to the network. | ||||
|  | ||||
| 6. `api.get_more_info(...)` can return the loss / accuracy / time on training / validation / test sets, which is very helpful. For more details, please look at the comments in the get_more_info function. | ||||
|  | ||||
| 7. For other usages, please see `lib/nas_201_api/api.py`. We provide some usage information in the comments for the corresponding functions. If what you want is not provided, please feel free to open an issue for discussion, and I am happy to answer any questions regarding NAS-Bench-201. | ||||
|  | ||||
|  | ||||
| ### Detailed Instruction | ||||
|  | ||||
| In `nas_201_api`, we define three classes: `NASBench201API`, `ArchResults`, `ResultsCount`. | ||||
|  | ||||
| `ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture): | ||||
| ``` | ||||
| from nas_201_api import ResultsCount | ||||
| xdata  = torch.load('000157-FULL.pth') | ||||
| odata  = xdata['full']['all_results'][('cifar10-valid', 777)] | ||||
| result = ResultsCount.create_from_state_dict( odata ) | ||||
| print(result) # print it | ||||
| print(result.get_train())   # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch] | ||||
| print(result.get_train(11)) # print the training info of the 11-th epoch | ||||
| print(result.get_eval('x-valid'))     # print the final evaluation info on the validation set | ||||
| print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch | ||||
| print(result.get_latency())           # print the evaluation latency [in batch] | ||||
| result.get_net_param()                # the trained parameters of this trial | ||||
| arch_config = result.get_config(CellStructure.str2structure) # create the network with params | ||||
| net_config  = dict2config(arch_config, None) | ||||
| network    = get_cell_based_tiny_net(net_config) | ||||
| network.load_state_dict(result.get_net_param()) | ||||
| ``` | ||||
|  | ||||
| `ArchResults` maintains all information of all trials of an architecture. Please see the following usages: | ||||
| ``` | ||||
| from nas_201_api import ArchResults | ||||
| xdata   = torch.load('000157-FULL.pth') | ||||
| archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with  12 epochs | ||||
| archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs | ||||
|  | ||||
| print(archRes.arch_idx_str())      # print the index of this architecture  | ||||
| print(archRes.get_dataset_names()) # print the supported training data | ||||
| print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid  | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) # print loss/accuracy/time of a randomly selected trial | ||||
| ``` | ||||
|  | ||||
| `NASBench201API` is the topest level api. Please see the following usages: | ||||
| ``` | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('NAS-Bench-201-v1_1-096897.pth') # This will load all the information of NAS-Bench-201 except the trained weights | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth')) # The same as the above line while I usually save NAS-Bench-201-v1_1-096897.pth in ~/.torch/. | ||||
| api.show(-1)  # show info of all architectures | ||||
| api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights | ||||
|  | ||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||
| ``` | ||||
|  | ||||
| To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api_201.py#L142)): | ||||
| ``` | ||||
| api.get_more_info(112, 'cifar10', None, hp='200', is_random=True) | ||||
| # Query info of last training epoch for 112-th architecture | ||||
| # using 200-epoch-hyper-parameter and randomly select a trial. | ||||
| api.get_more_info(112, 'ImageNet16-120', None, hp='200', is_random=True) | ||||
| ``` | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| If you find that NAS-Bench-201 helps your research, please consider citing it: | ||||
| ``` | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||
|   year      = {2020} | ||||
| } | ||||
| ``` | ||||
		Reference in New Issue
	
	Block a user