Update REA, REINFORCE, and RANDOM
This commit is contained in:
		
							
								
								
									
										180
									
								
								docs/NAS-Bench-201-PURE.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										180
									
								
								docs/NAS-Bench-201-PURE.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,180 @@ | ||||
| # [NAS-BENCH-201: Extending the Scope of Reproducible Neural Architecture Search](https://openreview.net/forum?id=HJxyZkBKDr) | ||||
|  | ||||
| We propose an algorithm-agnostic NAS benchmark (NAS-Bench-201) with a fixed search space, which provides a unified benchmark for almost any up-to-date NAS algorithms. | ||||
| The design of our search space is inspired by that used in the most popular cell-based searching algorithms, where a cell is represented as a directed acyclic graph. | ||||
| Each edge here is associated with an operation selected from a predefined operation set. | ||||
| For it to be applicable for all NAS algorithms, the search space defined in NAS-Bench-201 includes 4 nodes and 5 associated operation options, which generates 15,625 neural cell candidates in total. | ||||
|  | ||||
| In this Markdown file, we provide: | ||||
| - [How to Use NAS-Bench-201](#how-to-use-nas-bench-201) | ||||
|  | ||||
| For the following two things, please use [AutoDL-Projects](https://github.com/D-X-Y/AutoDL-Projects): | ||||
| - [Instruction to re-generate NAS-Bench-201](#instruction-to-re-generate-nas-bench-201) | ||||
| - [10 NAS algorithms evaluated in our paper](#to-reproduce-10-baseline-nas-algorithms-in-nas-bench-201) | ||||
|  | ||||
| Note: please use `PyTorch >= 1.2.0` and `Python >= 3.6.0`. | ||||
|  | ||||
| You can simply type `pip install nas-bench-201` to install our api. Please see source codes of `nas-bench-201` module in [this repo](https://github.com/D-X-Y/NAS-Bench-201). | ||||
|  | ||||
| **If you have any questions or issues, please post it at [here](https://github.com/D-X-Y/AutoDL-Projects/issues) or email me.** | ||||
|  | ||||
| ### Preparation and Download | ||||
|  | ||||
| [deprecated] The **old** benchmark file of NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/file/d/1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs/view?usp=sharing) or [Baidu-Wangpan (code:6u5d)](https://pan.baidu.com/s/1CiaNH6C12zuZf7q-Ilm09w). | ||||
|  | ||||
| [recommended] The **latest** benchmark file of NAS-Bench-201 (`NAS-Bench-201-v1_1-096897.pth`) can be downloaded from [Google Drive](https://drive.google.com/file/d/16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_/view?usp=sharing). The files for model weight are too large (431G) and I need some time to upload it. Please be patient, thanks for your understanding. | ||||
|  | ||||
| You can move it to anywhere you want and send its path to our API for initialization. | ||||
| - [2020.02.25] APIv1.0/FILEv1.0: [`NAS-Bench-201-v1_0-e61699.pth`](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs) (2.2G), where `e61699` is the last six digits for this file. It contains all information except for the trained weights of each trial. | ||||
| - [2020.02.25] APIv1.0/FILEv1.0: The full data of each architecture can be download from [ | ||||
| NAS-BENCH-201-4-v1.0-archive.tar](https://drive.google.com/open?id=1X2i-JXaElsnVLuGgM4tP-yNwtsspXgdQ) (about 226GB). This compressed folder has 15625 files containing the the trained weights. | ||||
| - [2020.02.25] APIv1.0/FILEv1.0: Checkpoints for 3 runs of each baseline NAS algorithm are provided in [Google Drive](https://drive.google.com/open?id=1eAgLZQAViP3r6dA0_ZOOGG9zPLXhGwXi). | ||||
| - [2020.03.09] APIv1.2/FILEv1.0: More robust API with more functions and descriptions | ||||
| - [2020.03.16] APIv1.3/FILEv1.1: [`NAS-Bench-201-v1_1-096897.pth`](https://drive.google.com/open?id=16Y0UwGisiouVRxW-W5hEtbxmcHw_0hF_) (4.7G), where `096897` is the last six digits for this file. It contains information of more trials compared to `NAS-Bench-201-v1_0-e61699.pth`, especially all models trained by 12 epochs on all datasets are avaliable. | ||||
| - [2020.06.30] APIv2.0: Use abstract class (NASBenchMetaAPI) for APIs of NAS-Bench-x0y. | ||||
| - [2020.06.30] FILEv2.0: coming soon! | ||||
|  | ||||
| **We recommend to use `NAS-Bench-201-v1_1-096897.pth`** | ||||
|  | ||||
|  | ||||
| The training and evaluation data used in NAS-Bench-201 can be downloaded from [Google Drive](https://drive.google.com/open?id=1L0Lzq8rWpZLPfiQGd6QR8q5xLV88emU7) or [Baidu-Wangpan (code:4fg7)](https://pan.baidu.com/s/1XAzavPKq3zcat1yBA1L2tQ). | ||||
| It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). If you want to generate NAS-Bench-201 or similar NAS datasets or training models by yourself, you need these data. | ||||
|  | ||||
| ## How to Use NAS-Bench-201 | ||||
|  | ||||
| **More usage can be found in [our test codes](https://github.com/D-X-Y/AutoDL-Projects/blob/master/exps/NAS-Bench-201/test-nas-api.py)**. | ||||
|  | ||||
| 1. Creating an API instance from a file: | ||||
| ``` | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('$path_to_meta_nas_bench_file') | ||||
| # Create an API without the verbose log | ||||
| api = API('NAS-Bench-201-v1_1-096897.pth', verbose=False) | ||||
| # The default path for benchmark file is '{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth') | ||||
| api = API(None) | ||||
| ``` | ||||
|  | ||||
| 2. Show the number of architectures `len(api)` and each architecture `api[i]`: | ||||
| ``` | ||||
| num = len(api) | ||||
| for i, arch_str in enumerate(api): | ||||
|   print ('{:5d}/{:5d} : {:}'.format(i, len(api), arch_str)) | ||||
| ``` | ||||
|  | ||||
| 3. Show the results of all trials for a single architecture: | ||||
| ``` | ||||
| # show all information for a specific architecture | ||||
| api.show(1) | ||||
| api.show(2) | ||||
|  | ||||
| # show the mean loss and accuracy of an architecture | ||||
| info = api.query_meta_info_by_index(1)  # This is an instance of `ArchResults` | ||||
| res_metrics = info.get_metrics('cifar10', 'train') # This is a dict with metric names as keys | ||||
| cost_metrics = info.get_comput_costs('cifar100') # This is a dict with metric names as keys, e.g., flops, params, latency | ||||
|  | ||||
| # get the detailed information | ||||
| results = api.query_by_index(1, 'cifar100') # a dict of all trials for 1st net on cifar100, where the key is the seed | ||||
| print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1])) | ||||
| print ('Latency : {:}'.format(results[0].get_latency())) | ||||
| print ('Train Info : {:}'.format(results[0].get_train())) | ||||
| print ('Valid Info : {:}'.format(results[0].get_eval('x-valid'))) | ||||
| print ('Test  Info : {:}'.format(results[0].get_eval('x-test'))) | ||||
| # for the metric after a specific epoch | ||||
| print ('Train Info [10-th epoch] : {:}'.format(results[0].get_train(10))) | ||||
| ``` | ||||
|  | ||||
| 4. Query the index of an architecture by string | ||||
| ``` | ||||
| index = api.query_index_by_arch('|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|') | ||||
| api.show(index) | ||||
| ``` | ||||
| This string `|nor_conv_3x3~0|+|nor_conv_3x3~0|avg_pool_3x3~1|+|skip_connect~0|nor_conv_3x3~1|skip_connect~2|` means: | ||||
| ``` | ||||
| node-0: the input tensor | ||||
| node-1: conv-3x3( node-0 ) | ||||
| node-2: conv-3x3( node-0 ) + avg-pool-3x3( node-1 ) | ||||
| node-3: skip-connect( node-0 ) + conv-3x3( node-1 ) + skip-connect( node-2 ) | ||||
| ``` | ||||
|  | ||||
| 5. Create the network from api: | ||||
| ``` | ||||
| config = api.get_net_config(123, 'cifar10') # obtain the network configuration for the 123-th architecture on the CIFAR-10 dataset | ||||
| from models import get_cell_based_tiny_net # this module is in AutoDL-Projects/lib/models | ||||
| network = get_cell_based_tiny_net(config) # create the network from configurration | ||||
| print(network) # show the structure of this architecture | ||||
| ``` | ||||
| If you want to load the trained weights of this created network, you need to use `api.get_net_param(123, ...)` to obtain the weights and then load it to the network. | ||||
|  | ||||
| 6. `api.get_more_info(...)` can return the loss / accuracy / time on training / validation / test sets, which is very helpful. For more details, please look at the comments in the get_more_info function. | ||||
|  | ||||
| 7. For other usages, please see `lib/nas_201_api/api.py`. We provide some usage information in the comments for the corresponding functions. If what you want is not provided, please feel free to open an issue for discussion, and I am happy to answer any questions regarding NAS-Bench-201. | ||||
|  | ||||
|  | ||||
| ### Detailed Instruction | ||||
|  | ||||
| In `nas_201_api`, we define three classes: `NASBench201API`, `ArchResults`, `ResultsCount`. | ||||
|  | ||||
| `ResultsCount` maintains all information of a specific trial. One can instantiate ResultsCount and get the info via the following codes (`000157-FULL.pth` saves all information of all trials of 157-th architecture): | ||||
| ``` | ||||
| from nas_201_api import ResultsCount | ||||
| xdata  = torch.load('000157-FULL.pth') | ||||
| odata  = xdata['full']['all_results'][('cifar10-valid', 777)] | ||||
| result = ResultsCount.create_from_state_dict( odata ) | ||||
| print(result) # print it | ||||
| print(result.get_train())   # print the final training loss/accuracy/[optional:time-cost-of-a-training-epoch] | ||||
| print(result.get_train(11)) # print the training info of the 11-th epoch | ||||
| print(result.get_eval('x-valid'))     # print the final evaluation info on the validation set | ||||
| print(result.get_eval('x-valid', 11)) # print the info on the validation set of the 11-th epoch | ||||
| print(result.get_latency())           # print the evaluation latency [in batch] | ||||
| result.get_net_param()                # the trained parameters of this trial | ||||
| arch_config = result.get_config(CellStructure.str2structure) # create the network with params | ||||
| net_config  = dict2config(arch_config, None) | ||||
| network    = get_cell_based_tiny_net(net_config) | ||||
| network.load_state_dict(result.get_net_param()) | ||||
| ``` | ||||
|  | ||||
| `ArchResults` maintains all information of all trials of an architecture. Please see the following usages: | ||||
| ``` | ||||
| from nas_201_api import ArchResults | ||||
| xdata   = torch.load('000157-FULL.pth') | ||||
| archRes = ArchResults.create_from_state_dict(xdata['less']) # load trials trained with  12 epochs | ||||
| archRes = ArchResults.create_from_state_dict(xdata['full']) # load trials trained with 200 epochs | ||||
|  | ||||
| print(archRes.arch_idx_str())      # print the index of this architecture  | ||||
| print(archRes.get_dataset_names()) # print the supported training data | ||||
| print(archRes.get_comput_costs('cifar10-valid')) # print all computational info when training on cifar10-valid  | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None, False)) # print the average loss/accuracy/time on all trials | ||||
| print(archRes.get_metrics('cifar10-valid', 'x-valid', None,  True)) # print loss/accuracy/time of a randomly selected trial | ||||
| ``` | ||||
|  | ||||
| `NASBench201API` is the topest level api. Please see the following usages: | ||||
| ``` | ||||
| from nas_201_api import NASBench201API as API | ||||
| api = API('NAS-Bench-201-v1_1-096897.pth') # This will load all the information of NAS-Bench-201 except the trained weights | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-201-v1_1-096897.pth')) # The same as the above line while I usually save NAS-Bench-201-v1_1-096897.pth in ~/.torch/. | ||||
| api.show(-1)  # show info of all architectures | ||||
| api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-archive'), 3) # This code will reload the information 3-th architecture with the trained weights | ||||
|  | ||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||
| ``` | ||||
|  | ||||
| To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api_201.py#L142)): | ||||
| ``` | ||||
| api.get_more_info(112, 'cifar10', None, hp='200', is_random=True) | ||||
| # Query info of last training epoch for 112-th architecture | ||||
| # using 200-epoch-hyper-parameter and randomly select a trial. | ||||
| api.get_more_info(112, 'ImageNet16-120', None, hp='200', is_random=True) | ||||
| ``` | ||||
|  | ||||
| # Citation | ||||
|  | ||||
| If you find that NAS-Bench-201 helps your research, please consider citing it: | ||||
| ``` | ||||
| @inproceedings{dong2020nasbench201, | ||||
|   title     = {NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search}, | ||||
|   author    = {Dong, Xuanyi and Yang, Yi}, | ||||
|   booktitle = {International Conference on Learning Representations (ICLR)}, | ||||
|   url       = {https://openreview.net/forum?id=HJxyZkBKDr}, | ||||
|   year      = {2020} | ||||
| } | ||||
| ``` | ||||
							
								
								
									
										214
									
								
								exps/algos-v2/bohb.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										214
									
								
								exps/algos-v2/bohb.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,214 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ################################################################### | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale # | ||||
| # required to install hpbandster ################################## | ||||
| # pip install hpbandster         ################################## | ||||
| ################################################################### | ||||
| # python exps/algos-v2/bohb.py --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3 | ||||
| ################################################################### | ||||
| import os, sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import torch | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018 | ||||
| import ConfigSpace | ||||
| from hpbandster.optimizers.bohb import BOHB | ||||
| import hpbandster.core.nameserver as hpns | ||||
| from hpbandster.core.worker import Worker | ||||
|  | ||||
|  | ||||
| def get_topology_config_space(search_space, max_nodes=4): | ||||
|   cs = ConfigSpace.ConfigurationSpace() | ||||
|   #edge2index   = {} | ||||
|   for i in range(1, max_nodes): | ||||
|     for j in range(i): | ||||
|       node_str = '{:}<-{:}'.format(i, j) | ||||
|       cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space)) | ||||
|   return cs | ||||
|  | ||||
|  | ||||
| def get_size_config_space(search_space): | ||||
|   cs = ConfigSpace.ConfigurationSpace() | ||||
| 	import pdb; pdb.set_trace() | ||||
|   #edge2index   = {} | ||||
|   for i in range(1, max_nodes): | ||||
|     for j in range(i): | ||||
|       node_str = '{:}<-{:}'.format(i, j) | ||||
|       cs.add_hyperparameter(ConfigSpace.CategoricalHyperparameter(node_str, search_space)) | ||||
|   return cs | ||||
|  | ||||
|  | ||||
| def config2topology_func(max_nodes=4): | ||||
|   def config2structure(config): | ||||
|     genotypes = [] | ||||
|     for i in range(1, max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         op_name = config[node_str] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return CellStructure( genotypes ) | ||||
|   return config2structure | ||||
|  | ||||
|  | ||||
| class MyWorker(Worker): | ||||
|  | ||||
|   def __init__(self, *args, convert_func=None, dataname=None, nas_bench=None, time_budget=None, **kwargs): | ||||
|     super().__init__(*args, **kwargs) | ||||
|     self.convert_func   = convert_func | ||||
|     self._dataname      = dataname | ||||
|     self._nas_bench     = nas_bench | ||||
|     self.time_budget    = time_budget | ||||
|     self.seen_archs     = [] | ||||
|     self.sim_cost_time  = 0 | ||||
|     self.real_cost_time = 0 | ||||
|     self.is_end         = False | ||||
|  | ||||
|   def get_the_best(self): | ||||
|     assert len(self.seen_archs) > 0 | ||||
|     best_index, best_acc = -1, None | ||||
|     for arch_index in self.seen_archs: | ||||
|       info = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True) | ||||
|       vacc = info['valid-accuracy'] | ||||
|       if best_acc is None or best_acc < vacc: | ||||
|         best_acc = vacc | ||||
|         best_index = arch_index | ||||
|     assert best_index != -1 | ||||
|     return best_index | ||||
|  | ||||
|   def compute(self, config, budget, **kwargs): | ||||
|     start_time = time.time() | ||||
|     structure  = self.convert_func( config ) | ||||
|     arch_index = self._nas_bench.query_index_by_arch( structure ) | ||||
|     info       = self._nas_bench.get_more_info(arch_index, self._dataname, None, hp='200', is_random=True) | ||||
|     cur_time   = info['train-all-time'] + info['valid-per-time'] | ||||
|     cur_vacc   = info['valid-accuracy'] | ||||
|     self.real_cost_time += (time.time() - start_time) | ||||
|     if self.sim_cost_time + cur_time <= self.time_budget and not self.is_end: | ||||
|       self.sim_cost_time += cur_time | ||||
|       self.seen_archs.append( arch_index ) | ||||
|       return ({'loss': 100 - float(cur_vacc), | ||||
|                'info': {'seen-arch'     : len(self.seen_archs), | ||||
|                         'sim-test-time' : self.sim_cost_time, | ||||
|                         'current-arch'  : arch_index} | ||||
|             }) | ||||
|     else: | ||||
|       self.is_end = True | ||||
|       return ({'loss': 100, | ||||
|                'info': {'seen-arch'     : len(self.seen_archs), | ||||
|                         'sim-test-time' : self.sim_cost_time, | ||||
|                         'current-arch'  : None} | ||||
|             }) | ||||
|  | ||||
|  | ||||
| def main(xargs, api): | ||||
|   torch.set_num_threads(4) | ||||
|   prepare_seed(xargs.rand_seed) | ||||
|   logger = prepare_logger(args) | ||||
|  | ||||
|   logger.log('{:} use api : {:}'.format(time_string(), api)) | ||||
|   search_space = get_search_spaces(xargs.search_space, 'nas-bench-301') | ||||
|   if xargs.search_space == 'tss': | ||||
|   	cs = get_topology_config_space(xargs.max_nodes, search_space) | ||||
|   	config2structure = config2topology_func(xargs.max_nodes) | ||||
|   else: | ||||
|   	cs = get_size_config_space(xargs.max_nodes, search_space) | ||||
|     import pdb; pdb.set_trace() | ||||
|    | ||||
|   hb_run_id = '0' | ||||
|  | ||||
|   NS = hpns.NameServer(run_id=hb_run_id, host='localhost', port=0) | ||||
|   ns_host, ns_port = NS.start() | ||||
|   num_workers = 1 | ||||
|  | ||||
|   workers = [] | ||||
|   for i in range(num_workers): | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, dataname=dataname, nas_bench=nas_bench, time_budget=xargs.time_budget, run_id=hb_run_id, id=i) | ||||
|     w.run(background=True) | ||||
|     workers.append(w) | ||||
|  | ||||
|   start_time = time.time() | ||||
|   bohb = BOHB(configspace=cs, | ||||
|             run_id=hb_run_id, | ||||
|             eta=3, min_budget=12, max_budget=200, | ||||
|             nameserver=ns_host, | ||||
|             nameserver_port=ns_port, | ||||
|             num_samples=xargs.num_samples, | ||||
|             random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, | ||||
|             ping_interval=10, min_bandwidth=xargs.min_bandwidth) | ||||
|    | ||||
|   results = bohb.run(xargs.n_iters, min_n_workers=num_workers) | ||||
|  | ||||
|   bohb.shutdown(shutdown_workers=True) | ||||
|   NS.shutdown() | ||||
|  | ||||
|   real_cost_time = time.time() - start_time | ||||
|  | ||||
|   id2config = results.get_id2config_mapping() | ||||
|   incumbent = results.get_incumbent_id() | ||||
|   logger.log('Best found configuration: {:} within {:.3f} s'.format(id2config[incumbent]['config'], real_cost_time)) | ||||
|   best_arch = config2structure( id2config[incumbent]['config'] ) | ||||
|  | ||||
|   info = nas_bench.query_by_arch(best_arch, '200') | ||||
|   if info is None: logger.log('Did not find this architecture : {:}.'.format(best_arch)) | ||||
|   else           : logger.log('{:}'.format(info)) | ||||
|   logger.log('-'*100) | ||||
|  | ||||
|   logger.log('workers : {:.1f}s with {:} archs'.format(workers[0].time_budget, len(workers[0].seen_archs))) | ||||
|   logger.close() | ||||
|   return logger.log_dir, nas_bench.query_index_by_arch( best_arch ), real_cost_time | ||||
|    | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale") | ||||
|   parser.add_argument('--dataset',            type=str,  choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # general arg | ||||
|   parser.add_argument('--search_space',       type=str,  choices=['tss', 'sss'], help='Choose the search space.') | ||||
|   parser.add_argument('--time_budget',        type=int,  default=20000, help='The total time cost budge for searching (in seconds).') | ||||
|   parser.add_argument('--loops_if_rand',      type=int,  default=500, help='The total runs for evaluation.') | ||||
|   # BOHB | ||||
|   parser.add_argument('--strategy', default="sampling",  type=str, nargs='?', help='optimization strategy for the acquisition function') | ||||
|   parser.add_argument('--min_bandwidth',    default=.3,  type=float, nargs='?', help='minimum bandwidth for KDE') | ||||
|   parser.add_argument('--num_samples',      default=64,  type=int, nargs='?', help='number of samples for the acquisition function') | ||||
|   parser.add_argument('--random_fraction',  default=.33, type=float, nargs='?', help='fraction of random configurations') | ||||
|   parser.add_argument('--bandwidth_factor', default=3,   type=int, nargs='?', help='factor multiplied to the bandwidth') | ||||
|   parser.add_argument('--n_iters',          default=300, type=int, nargs='?', help='number of iterations for optimization method') | ||||
|   # log | ||||
|   parser.add_argument('--save_dir',           type=str,   help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--rand_seed',          type=int,   help='manual seed') | ||||
|   args = parser.parse_args() | ||||
|    | ||||
|   if args.search_space == 'tss': | ||||
|     api = NASBench201API(verbose=False) | ||||
|   elif args.search_space == 'sss': | ||||
|     api = NASBench301API(verbose=False) | ||||
|   else: | ||||
|     raise ValueError('Invalid search space : {:}'.format(args.search_space)) | ||||
|  | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'BOHB') | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info = None, collections.OrderedDict() | ||||
|     for i in range(args.loops_if_rand): | ||||
|       print ('{:} : {:03d}/{:03d}'.format(time_string(), i, args.loops_if_rand)) | ||||
|       args.rand_seed = random.randint(1, 100000) | ||||
|       save_dir, all_archs, all_total_times = main(args, api) | ||||
|       all_info[i] = {'all_archs': all_archs, | ||||
|                      'all_total_times': all_total_times} | ||||
|     save_path = save_dir / 'results.pth' | ||||
|     print('save into {:}'.format(save_path)) | ||||
|     torch.save(all_info, save_path) | ||||
|   else: | ||||
|     main(args, api) | ||||
| @@ -214,8 +214,7 @@ def main(xargs, api): | ||||
|   logger.log('-'*30 + ' start searching with the time budget of {:} s'.format(xargs.time_budget)) | ||||
|   history, current_best_index, total_times = regularized_evolution(xargs.ea_cycles, xargs.ea_population, xargs.ea_sample_size, xargs.time_budget, random_arch, mutate_arch, api, xargs.dataset) | ||||
|   logger.log('{:} regularized_evolution finish with history of {:} arch with {:.1f} s (real-cost={:.2f} s).'.format(time_string(), len(history), total_times[-1], time.time()-x_start_time)) | ||||
|   best_arch = max(history, key=lambda i: i.accuracy) | ||||
|   best_arch = best_arch.arch | ||||
|   best_arch = max(history, key=lambda x: x[0])[1] | ||||
|   logger.log('{:} best arch is {:}'.format(time_string(), best_arch)) | ||||
|    | ||||
|   info = api.query_info_str_by_arch(best_arch, '200' if xargs.search_space == 'tss' else '90') | ||||
| @@ -249,6 +248,7 @@ if __name__ == '__main__': | ||||
|  | ||||
|   args.save_dir = os.path.join('{:}-{:}'.format(args.save_dir, args.search_space), args.dataset, 'R-EA-SS{:}'.format(args.ea_sample_size)) | ||||
|   print('save-dir : {:}'.format(args.save_dir)) | ||||
|   print('xargs : {:}'.format(args)) | ||||
|  | ||||
|   if args.rand_seed < 0: | ||||
|     save_dir, all_info = None, collections.OrderedDict() | ||||
|   | ||||
| @@ -11,8 +11,8 @@ for dataset in ${datasets} | ||||
| do | ||||
|   for search_space in ${search_spaces} | ||||
|   do | ||||
|     python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 | ||||
|     # python ./exps/algos-v2/reinforce.py --dataset ${dataset} --search_space ${search_space} --learning_rate 0.001 | ||||
|     python ./exps/algos-v2/regularized_ea.py --dataset ${dataset} --search_space ${search_space} --ea_cycles 200 --ea_population 10 --ea_sample_size 3 | ||||
|     python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} | ||||
|     # python ./exps/algos-v2/random_wo_share.py --dataset ${dataset} --search_space ${search_space} | ||||
|   done | ||||
| done | ||||
|   | ||||
| @@ -192,7 +192,7 @@ def main(xargs, nas_bench): | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser("Regularized Evolution Algorithm") | ||||
|   parser = argparse.ArgumentParser("BOHB: Robust and Efficient Hyperparameter Optimization at Scale") | ||||
|   parser.add_argument('--data_path',          type=str,   help='Path to dataset') | ||||
|   parser.add_argument('--dataset',            type=str,   choices=['cifar10', 'cifar100', 'ImageNet16-120'], help='Choose between Cifar10/100 and ImageNet-16.') | ||||
|   # channels and number-of-cells | ||||
|   | ||||
| @@ -30,10 +30,10 @@ def fetch_data(root_dir='./output/search', search_space='tss', dataset=None): | ||||
|   alg2name, alg2path = OrderedDict(), OrderedDict() | ||||
|   alg2name['REA'] = 'R-EA-SS3' | ||||
|   alg2name['REINFORCE'] = 'REINFORCE-0.001' | ||||
|   # alg2name['RANDOM'] = 'RANDOM' | ||||
|   alg2name['RANDOM'] = 'RANDOM' | ||||
|   for alg, name in alg2name.items(): | ||||
|     alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth') | ||||
|     assert os.path.isfile(alg2path[alg]) | ||||
|     assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg]) | ||||
|   alg2data = OrderedDict() | ||||
|   for alg, path in alg2path.items(): | ||||
|     data = torch.load(path) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user