Re-org debug codes
This commit is contained in:
parent
0138e71cf2
commit
17955123a0
@ -1,8 +1,8 @@
|
|||||||
#####################################################
|
#####################################################
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||||
#####################################################
|
#####################################################
|
||||||
# python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16
|
# python exps/LFNA/basic-same.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1
|
||||||
# python exps/LFNA/basic-same.py --srange 1-999 --env_version v2 --hidden_dim
|
# python exps/LFNA/basic-same.py --env_version v2 --hidden_dim 16 --epochs 1000 --init_lr 0.05
|
||||||
#####################################################
|
#####################################################
|
||||||
import sys, time, copy, torch, random, argparse
|
import sys, time, copy, torch, random, argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@ -58,7 +58,6 @@ def main(args):
|
|||||||
# build model
|
# build model
|
||||||
model = get_model(**model_kwargs)
|
model = get_model(**model_kwargs)
|
||||||
print(model)
|
print(model)
|
||||||
model.analyze_weights()
|
|
||||||
# build optimizer
|
# build optimizer
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||||
criterion = torch.nn.MSELoss()
|
criterion = torch.nn.MSELoss()
|
||||||
@ -85,6 +84,7 @@ def main(args):
|
|||||||
best_loss = loss.item()
|
best_loss = loss.item()
|
||||||
best_param = copy.deepcopy(model.state_dict())
|
best_param = copy.deepcopy(model.state_dict())
|
||||||
model.load_state_dict(best_param)
|
model.load_state_dict(best_param)
|
||||||
|
model.analyze_weights()
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
train_metric(preds, historical_y)
|
train_metric(preds, historical_y)
|
||||||
train_results = train_metric.get_info()
|
train_results = train_metric.get_info()
|
||||||
|
@ -1,7 +1,7 @@
|
|||||||
#####################################################
|
#####################################################
|
||||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||||
#####################################################
|
#####################################################
|
||||||
# python exps/LFNA/lfna-tall-hpnet.py --env_version v1 --hidden_dim 16 --epochs 100000 --meta_batch 64
|
# python exps/LFNA/lfna-debug-hpnet.py --env_version v1 --hidden_dim 16 --meta_batch 64 --device cuda
|
||||||
#####################################################
|
#####################################################
|
||||||
import sys, time, copy, torch, random, argparse
|
import sys, time, copy, torch, random, argparse
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
@ -26,7 +26,6 @@ from xlayers import super_core, trunc_normal_
|
|||||||
|
|
||||||
from lfna_utils import lfna_setup, train_model, TimeData
|
from lfna_utils import lfna_setup, train_model, TimeData
|
||||||
|
|
||||||
# from lfna_models import HyperNet_VX as HyperNet
|
|
||||||
from lfna_models import HyperNet
|
from lfna_models import HyperNet
|
||||||
|
|
||||||
|
|
||||||
@ -36,19 +35,31 @@ def main(args):
|
|||||||
model = get_model(**model_kwargs)
|
model = get_model(**model_kwargs)
|
||||||
criterion = torch.nn.MSELoss()
|
criterion = torch.nn.MSELoss()
|
||||||
|
|
||||||
logger.log("There are {:} weights.".format(model.numel()))
|
|
||||||
|
|
||||||
shape_container = model.get_w_container().to_shape_container()
|
shape_container = model.get_w_container().to_shape_container()
|
||||||
hypernet = HyperNet(shape_container, args.hidden_dim, args.task_dim)
|
hypernet = HyperNet(
|
||||||
total_bar = env_info["total"] - 1
|
shape_container, args.hidden_dim, args.task_dim, len(dynamic_env)
|
||||||
task_embeds = []
|
)
|
||||||
for i in range(env_info["total"]):
|
hypernet = hypernet.to(args.device)
|
||||||
task_embeds.append(torch.nn.Parameter(torch.Tensor(1, args.task_dim)))
|
|
||||||
for task_embed in task_embeds:
|
|
||||||
trunc_normal_(task_embed, std=0.02)
|
|
||||||
|
|
||||||
parameters = list(hypernet.parameters()) + task_embeds
|
logger.log(
|
||||||
optimizer = torch.optim.Adam(parameters, lr=args.init_lr, amsgrad=True)
|
"{:} There are {:} weights in the base-model.".format(
|
||||||
|
time_string(), model.numel()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
logger.log(
|
||||||
|
"{:} There are {:} weights in the meta-model.".format(
|
||||||
|
time_string(), hypernet.numel()
|
||||||
|
)
|
||||||
|
)
|
||||||
|
|
||||||
|
for i in range(len(dynamic_env)):
|
||||||
|
env_info["{:}-x".format(i)] = env_info["{:}-x".format(i)].to(args.device)
|
||||||
|
env_info["{:}-y".format(i)] = env_info["{:}-y".format(i)].to(args.device)
|
||||||
|
logger.log("{:} Convert to device-{:} done".format(time_string(), args.device))
|
||||||
|
|
||||||
|
optimizer = torch.optim.Adam(
|
||||||
|
hypernet.parameters(), lr=args.init_lr, weight_decay=1e-5, amsgrad=True
|
||||||
|
)
|
||||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||||
optimizer,
|
optimizer,
|
||||||
milestones=[
|
milestones=[
|
||||||
@ -59,8 +70,8 @@ def main(args):
|
|||||||
)
|
)
|
||||||
|
|
||||||
# LFNA meta-training
|
# LFNA meta-training
|
||||||
loss_meter = AverageMeter()
|
|
||||||
per_epoch_time, start_time = AverageMeter(), time.time()
|
per_epoch_time, start_time = AverageMeter(), time.time()
|
||||||
|
last_success_epoch = 0
|
||||||
for iepoch in range(args.epochs):
|
for iepoch in range(args.epochs):
|
||||||
|
|
||||||
need_time = "Time Left: {:}".format(
|
need_time = "Time Left: {:}".format(
|
||||||
@ -70,65 +81,65 @@ def main(args):
|
|||||||
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
"[{:}] [{:04d}/{:04d}] ".format(time_string(), iepoch, args.epochs)
|
||||||
+ need_time
|
+ need_time
|
||||||
)
|
)
|
||||||
|
# One Epoch
|
||||||
|
loss_meter = AverageMeter()
|
||||||
|
for istep in range(args.per_epoch_step):
|
||||||
|
losses = []
|
||||||
|
for ibatch in range(args.meta_batch):
|
||||||
|
cur_time = random.randint(0, len(dynamic_env) - 1)
|
||||||
|
cur_container = hypernet(cur_time)
|
||||||
|
cur_x = env_info["{:}-x".format(cur_time)]
|
||||||
|
cur_y = env_info["{:}-y".format(cur_time)]
|
||||||
|
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
||||||
|
|
||||||
limit_bar = float(iepoch + 1) / args.epochs * total_bar
|
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
||||||
limit_bar = min(max(32, int(limit_bar)), total_bar)
|
optimizer.zero_grad()
|
||||||
losses = []
|
loss = criterion(preds, cur_dataset.y)
|
||||||
for ibatch in range(args.meta_batch):
|
|
||||||
cur_time = random.randint(0, limit_bar)
|
|
||||||
cur_task_embed = task_embeds[cur_time]
|
|
||||||
cur_container = hypernet(cur_task_embed)
|
|
||||||
cur_x = env_info["{:}-x".format(cur_time)]
|
|
||||||
cur_y = env_info["{:}-y".format(cur_time)]
|
|
||||||
cur_dataset = TimeData(cur_time, cur_x, cur_y)
|
|
||||||
|
|
||||||
preds = model.forward_with_container(cur_dataset.x, cur_container)
|
losses.append(loss)
|
||||||
optimizer.zero_grad()
|
final_loss = torch.stack(losses).mean()
|
||||||
loss = criterion(preds, cur_dataset.y)
|
final_loss.backward()
|
||||||
|
optimizer.step()
|
||||||
losses.append(loss)
|
lr_scheduler.step()
|
||||||
|
loss_meter.update(final_loss.item())
|
||||||
final_loss = torch.stack(losses).mean()
|
success, best_score = hypernet.save_best(-loss_meter.avg)
|
||||||
final_loss.backward()
|
if success:
|
||||||
torch.nn.utils.clip_grad_norm_(parameters, 1.0)
|
logger.log("Achieve the best with best_score = {:.3f}".format(best_score))
|
||||||
optimizer.step()
|
last_success_epoch = iepoch
|
||||||
lr_scheduler.step()
|
if iepoch - last_success_epoch >= args.early_stop_thresh:
|
||||||
|
logger.log("Early stop at {:}".format(iepoch))
|
||||||
loss_meter.update(final_loss.item())
|
break
|
||||||
if iepoch % 200 == 0:
|
logger.log(
|
||||||
logger.log(
|
head_str
|
||||||
head_str
|
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}".format(
|
||||||
+ " meta-loss: {:.4f} ({:.4f}) :: lr={:.5f}, batch={:}, limit={:}".format(
|
loss_meter.avg,
|
||||||
loss_meter.avg,
|
loss_meter.val,
|
||||||
loss_meter.val,
|
min(lr_scheduler.get_last_lr()),
|
||||||
min(lr_scheduler.get_last_lr()),
|
len(losses),
|
||||||
len(losses),
|
|
||||||
limit_bar,
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
)
|
||||||
|
|
||||||
save_checkpoint(
|
save_checkpoint(
|
||||||
{
|
{
|
||||||
"hypernet": hypernet.state_dict(),
|
"hypernet": hypernet.state_dict(),
|
||||||
"task_embeds": task_embeds,
|
"lr_scheduler": lr_scheduler.state_dict(),
|
||||||
"lr_scheduler": lr_scheduler.state_dict(),
|
"iepoch": iepoch,
|
||||||
"iepoch": iepoch,
|
},
|
||||||
},
|
logger.path("model"),
|
||||||
logger.path("model"),
|
logger,
|
||||||
logger,
|
)
|
||||||
)
|
|
||||||
loss_meter.reset()
|
|
||||||
per_epoch_time.update(time.time() - start_time)
|
per_epoch_time.update(time.time() - start_time)
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
|
|
||||||
print(model)
|
print(model)
|
||||||
print(hypernet)
|
print(hypernet)
|
||||||
|
hypernet.load_best()
|
||||||
|
|
||||||
w_container_per_epoch = dict()
|
w_container_per_epoch = dict()
|
||||||
for idx in range(0, env_info["total"]):
|
for idx in range(0, env_info["total"]):
|
||||||
future_time = env_info["{:}-timestamp".format(idx)]
|
|
||||||
future_x = env_info["{:}-x".format(idx)]
|
future_x = env_info["{:}-x".format(idx)]
|
||||||
future_y = env_info["{:}-y".format(idx)]
|
future_y = env_info["{:}-y".format(idx)]
|
||||||
future_container = hypernet(task_embeds[idx])
|
future_container = hypernet(idx)
|
||||||
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
w_container_per_epoch[idx] = future_container.no_grad_clone()
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
future_y_hat = model.forward_with_container(
|
future_y_hat = model.forward_with_container(
|
||||||
@ -152,7 +163,7 @@ if __name__ == "__main__":
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--save_dir",
|
"--save_dir",
|
||||||
type=str,
|
type=str,
|
||||||
default="./outputs/lfna-synthetic/lfna-tall-hpnet",
|
default="./outputs/lfna-synthetic/lfna-debug-hpnet",
|
||||||
help="The checkpoint directory.",
|
help="The checkpoint directory.",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -171,7 +182,7 @@ if __name__ == "__main__":
|
|||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--init_lr",
|
"--init_lr",
|
||||||
type=float,
|
type=float,
|
||||||
default=0.1,
|
default=0.01,
|
||||||
help="The initial learning rate for the optimizer (default is Adam)",
|
help="The initial learning rate for the optimizer (default is Adam)",
|
||||||
)
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
@ -180,12 +191,30 @@ if __name__ == "__main__":
|
|||||||
default=64,
|
default=64,
|
||||||
help="The batch size for the meta-model",
|
help="The batch size for the meta-model",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--early_stop_thresh",
|
||||||
|
type=int,
|
||||||
|
default=100,
|
||||||
|
help="The maximum epochs for early stop.",
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--epochs",
|
"--epochs",
|
||||||
type=int,
|
type=int,
|
||||||
default=2000,
|
default=2000,
|
||||||
help="The total number of epochs.",
|
help="The total number of epochs.",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--per_epoch_step",
|
||||||
|
type=int,
|
||||||
|
default=20,
|
||||||
|
help="The total number of epochs.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--device",
|
||||||
|
type=str,
|
||||||
|
default="cpu",
|
||||||
|
help="",
|
||||||
|
)
|
||||||
# Random Seed
|
# Random Seed
|
||||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
@ -39,10 +39,10 @@ class HyperNet(super_core.SuperModule):
|
|||||||
config=dict(model_type="dual_norm_mlp"),
|
config=dict(model_type="dual_norm_mlp"),
|
||||||
input_dim=layer_embeding + task_embedding,
|
input_dim=layer_embeding + task_embedding,
|
||||||
output_dim=max(self._numel_per_layer),
|
output_dim=max(self._numel_per_layer),
|
||||||
hidden_dims=[layer_embeding * 4] * 3,
|
hidden_dims=[(layer_embeding + task_embedding) * 2] * 3,
|
||||||
act_cls="gelu",
|
act_cls="gelu",
|
||||||
norm_cls="layer_norm_1d",
|
norm_cls="layer_norm_1d",
|
||||||
dropout=0.1,
|
dropout=0.2,
|
||||||
)
|
)
|
||||||
import pdb
|
import pdb
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user