Fix black errors
This commit is contained in:
parent
b8c173eb76
commit
1acd1e9f9b
@ -13,6 +13,8 @@
|
||||
# python exps/trading/baselines.py --alg LightGBM #
|
||||
# python exps/trading/baselines.py --alg DoubleE #
|
||||
# python exps/trading/baselines.py --alg TabNet #
|
||||
# #
|
||||
# python exps/trading/baselines.py --alg Transformer#
|
||||
#####################################################
|
||||
import sys
|
||||
import argparse
|
||||
|
@ -27,8 +27,10 @@ import torch.utils.data as th_data
|
||||
|
||||
from log_utils import AverageMeter
|
||||
from utils import count_parameters
|
||||
from trade_models.transformers import DEFAULT_NET_CONFIG
|
||||
from trade_models.transformers import get_transformer
|
||||
|
||||
from xlayers import super_core
|
||||
from .transformers import DEFAULT_NET_CONFIG
|
||||
from .transformers import get_transformer
|
||||
|
||||
|
||||
from qlib.model.base import Model
|
||||
@ -90,6 +92,7 @@ class QuantTransformer(Model):
|
||||
torch.cuda.manual_seed_all(self.seed)
|
||||
|
||||
self.model = get_transformer(self.net_config)
|
||||
self.model.set_super_run_type(super_core.SuperRunMode.FullModel)
|
||||
self.logger.info("model: {:}".format(self.model))
|
||||
self.logger.info("model size: {:.3f} MB".format(count_parameters(self.model)))
|
||||
|
||||
|
@ -17,7 +17,7 @@ from xlayers import trunc_normal_
|
||||
from xlayers import super_core
|
||||
|
||||
|
||||
__all__ = ["DefaultSearchSpace"]
|
||||
__all__ = ["DefaultSearchSpace", "DEFAULT_NET_CONFIG", "get_transformer"]
|
||||
|
||||
|
||||
def _get_mul_specs(candidates, num):
|
||||
@ -41,6 +41,7 @@ def _assert_types(x, expected_types):
|
||||
)
|
||||
|
||||
|
||||
DEFAULT_NET_CONFIG = None
|
||||
_default_max_depth = 5
|
||||
DefaultSearchSpace = dict(
|
||||
d_feat=6,
|
||||
@ -163,7 +164,9 @@ class SuperTransformer(super_core.SuperModule):
|
||||
else:
|
||||
stem_dim = spaces.get_determined_value(self._stem_dim)
|
||||
cls_tokens = self.cls_token.expand(batch, -1, -1)
|
||||
cls_tokens = F.interpolate(cls_tokens, size=(stem_dim), mode="linear", align_corners=True)
|
||||
cls_tokens = F.interpolate(
|
||||
cls_tokens, size=(stem_dim), mode="linear", align_corners=True
|
||||
)
|
||||
feats_w_ct = torch.cat((cls_tokens, feats), dim=1)
|
||||
feats_w_tp = self.pos_embed(feats_w_ct)
|
||||
xfeats = self.backbone(feats_w_tp)
|
||||
|
Loading…
Reference in New Issue
Block a user