update README
This commit is contained in:
		
							
								
								
									
										14
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										14
									
								
								README.md
									
									
									
									
									
								
							| @@ -17,8 +17,12 @@ Some methods use knowledge distillation (KD), which require pre-trained models. | |||||||
|  |  | ||||||
| ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||||
| In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | ||||||
|  | You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html). | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="700"> | <p float="left"> | ||||||
|  | <img src="https://d-x-y.github.com/resources/paper-icon/NIPS-2019-TAS.png" width="680px"/> | ||||||
|  | <img src="https://d-x-y.github.com/resources/videos/NeurIPS-2019-TAS/TAS-arch.gif?raw=true" width="180px"/> | ||||||
|  | </p> | ||||||
|  |  | ||||||
|  |  | ||||||
| ### Usage | ### Usage | ||||||
| @@ -46,9 +50,10 @@ args: `cifar10` indicates the dataset name, `ResNet56` indicates the basemodel n | |||||||
|  |  | ||||||
| ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ## One-Shot Neural Architecture Search via Self-Evaluated Template Network | ||||||
|  |  | ||||||
|  | <img align="right" src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> | ||||||
|  |  | ||||||
| Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | Highlight: we equip one-shot NAS with an architecture sampler and train network weights using uniformly sampling. | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/ICCV-2019-SETN.png" width="450"> |  | ||||||
|  |  | ||||||
| ### Usage | ### Usage | ||||||
|  |  | ||||||
| @@ -64,9 +69,10 @@ Searching codes come soon! | |||||||
|  |  | ||||||
| ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ## [Searching for A Robust Neural Architecture in Four GPU Hours](http://openaccess.thecvf.com/content_CVPR_2019/papers/Dong_Searching_for_a_Robust_Neural_Architecture_in_Four_GPU_Hours_CVPR_2019_paper.pdf) | ||||||
|  |  | ||||||
| We proposed a gradient-based searching algorithm using differentiable architecture sampling (improving DARTS with Gumbel-softmax sampling). |  | ||||||
|  |  | ||||||
| <img src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | <img align="right" src="https://d-x-y.github.com/resources/paper-icon/CVPR-2019-GDAS.png" width="300"> | ||||||
|  |  | ||||||
|  | We proposed a gradient-based searching algorithm using differentiable architecture sampling (improving DARTS with Gumbel-softmax sampling). | ||||||
|  |  | ||||||
| The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | The old version is located at [`others/GDAS`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/GDAS) and a paddlepaddle implementation is locate at [`others/paddlepaddle`](https://github.com/D-X-Y/NAS-Projects/tree/master/others/paddlepaddle). | ||||||
|  |  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user