Update Weight Watcher in utils
This commit is contained in:
		| @@ -5,18 +5,15 @@ | ||||
| # required to install hpbandster ################################## | ||||
| # bash ./scripts-search/algos/BOHB.sh -1         ################## | ||||
| ################################################################### | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| import os, sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import load_config, dict2config, configure2str | ||||
| from config_utils import load_config | ||||
| from datasets     import get_datasets, SearchDataset | ||||
| from procedures   import prepare_seed, prepare_logger, save_checkpoint, copy_checkpoint, get_optim_scheduler | ||||
| from utils        import get_model_infos, obtain_accuracy | ||||
| from procedures   import prepare_seed, prepare_logger | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_201_api  import NASBench201API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
|   | ||||
| @@ -3,11 +3,9 @@ | ||||
| ######################################################## | ||||
| # DARTS: Differentiable Architecture Search, ICLR 2019 # | ||||
| ######################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np | ||||
| import sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| import torch | ||||
| import torch.nn as nn | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|   | ||||
							
								
								
									
										21
									
								
								exps/experimental/test-ww.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										21
									
								
								exps/experimental/test-ww.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,21 @@ | ||||
| import sys, time, random, argparse | ||||
| from copy import deepcopy | ||||
| import torchvision.models as models | ||||
| from pathlib import Path | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| from utils import weight_watcher | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|   model = models.vgg19_bn(pretrained=True) | ||||
|   _, summary = weight_watcher.analyze(model, alphas=False) | ||||
|   # print(summary) | ||||
|   for key, value in summary.items(): | ||||
|     print('{:10s} : {:}'.format(key, value)) | ||||
|   # import pdb; pdb.set_trace() | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   main() | ||||
| @@ -1,11 +1,10 @@ | ||||
| # This file is for experimental usage | ||||
| import os, sys, torch, random | ||||
| import torch, random | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| from tqdm import tqdm | ||||
| import torch.nn as nn | ||||
|  | ||||
| from utils  import obtain_accuracy | ||||
| # from utils  import obtain_accuracy | ||||
| from models import CellStructure | ||||
| from log_utils import time_string | ||||
|  | ||||
|   | ||||
							
								
								
									
										319
									
								
								lib/utils/weight_watcher.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										319
									
								
								lib/utils/weight_watcher.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,319 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.03 # | ||||
| ##################################################### | ||||
| # Reformulate the codes in https://github.com/CalculatedContent/WeightWatcher | ||||
| ##################################################### | ||||
| import numpy as np | ||||
| from typing import List | ||||
| import torch.nn as nn | ||||
| from collections import OrderedDict | ||||
| from sklearn.decomposition import TruncatedSVD | ||||
|  | ||||
|  | ||||
| def available_module_types(): | ||||
|   return (nn.Conv2d, nn.Linear) | ||||
|  | ||||
|  | ||||
| def get_conv2D_Wmats(tensor: np.ndarray) -> List[np.ndarray]: | ||||
|   """ | ||||
|   Extract W slices from a 4 index conv2D tensor of shape: (N,M,i,j) or (M,N,i,j). | ||||
|   Return ij (N x M) matrices | ||||
|   """ | ||||
|   mats = [] | ||||
|   N, M, imax, jmax = tensor.shape | ||||
|   assert N + M >= imax + jmax, 'invalid tensor shape detected: {}x{} (NxM), {}x{} (i,j)'.format(N, M, imax, jmax) | ||||
|   for i in range(imax): | ||||
|     for j in range(jmax): | ||||
|       w = tensor[:, :, i, j] | ||||
|       if N < M: w = w.T | ||||
|       mats.append(w) | ||||
|   return mats | ||||
|  | ||||
|  | ||||
| def glorot_norm_check(W, N, M, rf_size, lower=0.5, upper=1.5): | ||||
|   """Check if this layer needs Glorot Normalization Fix""" | ||||
|  | ||||
|   kappa = np.sqrt(2 / ((N + M) * rf_size)) | ||||
|   norm = np.linalg.norm(W) | ||||
|  | ||||
|   check1 = norm / np.sqrt(N * M) | ||||
|   check2 = norm / (kappa * np.sqrt(N * M)) | ||||
|  | ||||
|   if (rf_size > 1) and (check2 > lower) and (check2 < upper): | ||||
|     return check2, True | ||||
|   elif (check1 > lower) & (check1 < upper): | ||||
|     return check1, True | ||||
|   else: | ||||
|     if rf_size > 1: return check2, False | ||||
|     else: return check1, False | ||||
|  | ||||
| def glorot_norm_fix(w, n, m, rf_size): | ||||
|   """Apply Glorot Normalization Fix.""" | ||||
|   kappa = np.sqrt(2 / ((n + m) * rf_size)) | ||||
|   w = w / kappa | ||||
|   return w | ||||
|  | ||||
|  | ||||
| def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix): | ||||
|   results = OrderedDict() | ||||
|   count = len(weights) | ||||
|   if count == 0: return results | ||||
|  | ||||
|   for i, weight in enumerate(weights): | ||||
|     M, N = np.min(weight.shape), np.max(weight.shape) | ||||
|     Q = N / M | ||||
|     results[i] = cur_res = OrderedDict(N=N, M=M, Q=Q) | ||||
|     check, checkTF = glorot_norm_check(weight, N, M, count) | ||||
|     cur_res['check'] = check | ||||
|     cur_res['checkTF'] = checkTF | ||||
|     # assume receptive field size is count | ||||
|     if glorot_fix: | ||||
|       weight = glorot_norm_fix(weight, N, M, count) | ||||
|     else: | ||||
|       # probably never needed since we always fix for glorot | ||||
|       weight = weight * np.sqrt(count / 2.0) | ||||
|  | ||||
|     if spectralnorms:  # spectralnorm is the max eigenvalues | ||||
|       svd = TruncatedSVD(n_components=1, n_iter=7, random_state=10) | ||||
|       svd.fit(weight) | ||||
|       sv = svd.singular_values_ | ||||
|       sv_max = np.max(sv) | ||||
|       if normalize: | ||||
|         evals = sv * sv / N | ||||
|       else: | ||||
|         evals = sv * sv | ||||
|       lambda0 = evals[0] | ||||
|       cur_res["spectralnorm"] = lambda0 | ||||
|       cur_res["logspectralnorm"] = np.log10(lambda0) | ||||
|     else: | ||||
|       lambda0 = None | ||||
|  | ||||
|     if M < min_size: | ||||
|       summary = "Weight matrix {}/{} ({},{}): Skipping: too small (<{})".format(i + 1, count, M, N, min_size) | ||||
|       cur_res["summary"] = summary | ||||
|       continue | ||||
|     elif max_size > 0 and M > max_size: | ||||
|       summary = "Weight matrix {}/{} ({},{}): Skipping: too big (testing) (>{})".format(i + 1, count, M, N, max_size) | ||||
|       cur_res["summary"] = summary | ||||
|       continue | ||||
|     else: | ||||
|       summary = [] | ||||
|     if alphas: | ||||
|       import powerlaw | ||||
|       svd = TruncatedSVD(n_components=M - 1, n_iter=7, random_state=10) | ||||
|       svd.fit(weight.astype(float)) | ||||
|       sv = svd.singular_values_ | ||||
|       if normalize: evals = sv * sv / N | ||||
|       else: evals = sv * sv | ||||
|  | ||||
|       lambda_max = np.max(evals) | ||||
|       fit = powerlaw.Fit(evals, xmax=lambda_max, verbose=False) | ||||
|       alpha = fit.alpha | ||||
|       cur_res["alpha"] = alpha | ||||
|       D = fit.D | ||||
|       cur_res["D"] = D | ||||
|       cur_res["lambda_min"] = np.min(evals) | ||||
|       cur_res["lambda_max"] = lambda_max | ||||
|       alpha_weighted = alpha * np.log10(lambda_max) | ||||
|       cur_res["alpha_weighted"] = alpha_weighted | ||||
|       tolerance = lambda_max * M * np.finfo(np.max(sv)).eps | ||||
|       cur_res["rank_loss"] = np.count_nonzero(sv > tolerance, axis=-1) | ||||
|  | ||||
|       logpnorm = np.log10(np.sum([ev ** alpha for ev in evals])) | ||||
|       cur_res["logpnorm"] = logpnorm | ||||
|  | ||||
|       summary.append( | ||||
|         "Weight matrix {}/{} ({},{}): Alpha: {}, Alpha Weighted: {}, D: {}, pNorm {}".format(i + 1, count, M, N, alpha, | ||||
|                                                                                              alpha_weighted, D, | ||||
|                                                                                              logpnorm)) | ||||
|  | ||||
|     if lognorms: | ||||
|       norm = np.linalg.norm(weight)  # Frobenius Norm | ||||
|       cur_res["norm"] = norm | ||||
|       lognorm = np.log10(norm) | ||||
|       cur_res["lognorm"] = lognorm | ||||
|  | ||||
|       X = np.dot(weight.T, weight) | ||||
|       if normalize: X = X / N | ||||
|       normX = np.linalg.norm(X)  # Frobenius Norm | ||||
|       cur_res["normX"] = normX | ||||
|       lognormX = np.log10(normX) | ||||
|       cur_res["lognormX"] = lognormX | ||||
|  | ||||
|       summary.append( | ||||
|         "Weight matrix {}/{} ({},{}): LogNorm: {} ; LogNormX: {}".format(i + 1, count, M, N, lognorm, lognormX)) | ||||
|  | ||||
|       if softranks: | ||||
|         softrank = norm ** 2 / sv_max ** 2 | ||||
|         softranklog = np.log10(softrank) | ||||
|         softranklogratio = lognorm / np.log10(sv_max) | ||||
|         cur_res["softrank"] = softrank | ||||
|         cur_res["softranklog"] = softranklog | ||||
|         cur_res["softranklogratio"] = softranklogratio | ||||
|         summary += "{}. Softrank: {}. Softrank log: {}. Softrank log ratio: {}".format(summary, softrank, softranklog, | ||||
|                                                                                        softranklogratio) | ||||
|     cur_res["summary"] = "\n".join(summary) | ||||
|   return results | ||||
|  | ||||
|  | ||||
| def compute_details(results): | ||||
|   """ | ||||
|   Return a pandas data frame. | ||||
|   """ | ||||
|   final_summary = OrderedDict() | ||||
|  | ||||
|   metrics = { | ||||
|     # key in "results" : pretty print name | ||||
|     "check": "Check", | ||||
|     "checkTF": "CheckTF", | ||||
|     "norm": "Norm", | ||||
|     "lognorm": "LogNorm", | ||||
|     "normX": "Norm X", | ||||
|     "lognormX": "LogNorm X", | ||||
|     "alpha": "Alpha", | ||||
|     "alpha_weighted": "Alpha Weighted", | ||||
|     "spectralnorm": "Spectral Norm", | ||||
|     "logspectralnorm": "Log Spectral Norm", | ||||
|     "softrank": "Softrank", | ||||
|     "softranklog": "Softrank Log", | ||||
|     "softranklogratio": "Softrank Log Ratio", | ||||
|     "sigma_mp": "Marchenko-Pastur (MP) fit sigma", | ||||
|     "numofSpikes": "Number of spikes per MP fit", | ||||
|     "ratio_numofSpikes": "aka, percent_mass, Number of spikes / total number of evals", | ||||
|     "softrank_mp": "Softrank for MP fit", | ||||
|     "logpnorm": "alpha pNorm" | ||||
|   } | ||||
|  | ||||
|   metrics_stats = [] | ||||
|   for metric in metrics: | ||||
|     metrics_stats.append("{}_min".format(metric)) | ||||
|     metrics_stats.append("{}_max".format(metric)) | ||||
|     metrics_stats.append("{}_avg".format(metric)) | ||||
|  | ||||
|     metrics_stats.append("{}_compound_min".format(metric)) | ||||
|     metrics_stats.append("{}_compound_max".format(metric)) | ||||
|     metrics_stats.append("{}_compound_avg".format(metric)) | ||||
|  | ||||
|   columns = ["layer_id", "layer_type", "N", "M", "layer_count", "slice", | ||||
|              "slice_count", "level", "comment"] + [*metrics] + metrics_stats | ||||
|  | ||||
|   metrics_values = {} | ||||
|   metrics_values_compound = {} | ||||
|  | ||||
|   for metric in metrics: | ||||
|     metrics_values[metric] = [] | ||||
|     metrics_values_compound[metric] = [] | ||||
|  | ||||
|   layer_count = 0 | ||||
|   for layer_id, result in results.items(): | ||||
|     layer_count += 1 | ||||
|  | ||||
|     layer_type = np.NAN | ||||
|     if "layer_type" in result: | ||||
|       layer_type = str(result["layer_type"]).replace("LAYER_TYPE.", "") | ||||
|  | ||||
|     compounds = {}  # temp var | ||||
|     for metric in metrics: | ||||
|       compounds[metric] = [] | ||||
|  | ||||
|     slice_count, Ntotal, Mtotal = 0, 0, 0 | ||||
|     for slice_id, summary in result.items(): | ||||
|       if not str(slice_id).isdigit(): | ||||
|         continue | ||||
|       slice_count += 1 | ||||
|  | ||||
|       N = np.NAN | ||||
|       if "N" in summary: | ||||
|         N = summary["N"] | ||||
|         Ntotal += N | ||||
|  | ||||
|       M = np.NAN | ||||
|       if "M" in summary: | ||||
|         M = summary["M"] | ||||
|         Mtotal += M | ||||
|  | ||||
|       data = {"layer_id": layer_id, "layer_type": layer_type, "N": N, "M": M, "slice": slice_id, "level": "SLICE", | ||||
|               "comment": "Slice level"} | ||||
|       for metric in metrics: | ||||
|         if metric in summary: | ||||
|           value = summary[metric] | ||||
|           if value is not None: | ||||
|             metrics_values[metric].append(value) | ||||
|             compounds[metric].append(value) | ||||
|             data[metric] = value | ||||
|  | ||||
|     data = {"layer_id": layer_id, "layer_type": layer_type, "N": Ntotal, "M": Mtotal, "slice_count": slice_count, | ||||
|             "level": "LAYER", "comment": "Layer level"} | ||||
|     # Compute the compound value over the slices | ||||
|     for metric, value in compounds.items(): | ||||
|       count = len(value) | ||||
|       if count == 0: | ||||
|         continue | ||||
|  | ||||
|       compound = np.mean(value) | ||||
|       metrics_values_compound[metric].append(compound) | ||||
|       data[metric] = compound | ||||
|  | ||||
|   data = {"layer_count": layer_count, "level": "NETWORK", "comment": "Network Level"} | ||||
|   for metric, metric_name in metrics.items(): | ||||
|     if metric not in metrics_values or len(metrics_values[metric]) == 0: | ||||
|       continue | ||||
|  | ||||
|     values = metrics_values[metric] | ||||
|     minimum = min(values) | ||||
|     maximum = max(values) | ||||
|     avg = np.mean(values) | ||||
|     final_summary[metric] = avg | ||||
|     # print("{}: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg)) | ||||
|     data["{}_min".format(metric)] = minimum | ||||
|     data["{}_max".format(metric)] = maximum | ||||
|     data["{}_avg".format(metric)] = avg | ||||
|  | ||||
|     values = metrics_values_compound[metric] | ||||
|     minimum = min(values) | ||||
|     maximum = max(values) | ||||
|     avg = np.mean(values) | ||||
|     final_summary["{}_compound".format(metric)] = avg | ||||
|     # print("{} compound: min: {}, max: {}, avg: {}".format(metric_name, minimum, maximum, avg)) | ||||
|     data["{}_compound_min".format(metric)] = minimum | ||||
|     data["{}_compound_max".format(metric)] = maximum | ||||
|     data["{}_compound_avg".format(metric)] = avg | ||||
|  | ||||
|   return final_summary | ||||
|  | ||||
|  | ||||
| def analyze(model: nn.Module, min_size=50, max_size=0, | ||||
|             alphas: bool = False, lognorms: bool = True, spectralnorms: bool = False, | ||||
|             softranks: bool = False, normalize: bool = False, glorot_fix: bool = False): | ||||
|   """ | ||||
|   Analyze the weight matrices of a model. | ||||
|   :param model: A PyTorch model | ||||
|   :param min_size: The minimum weight matrix size to analyze. | ||||
|   :param max_size: The maximum weight matrix size to analyze (0 = no limit). | ||||
|   :param alphas: Compute the power laws (alpha) of the weight matrices. | ||||
|     Time consuming so disabled by default (use lognorm if you want speed) | ||||
|   :param lognorms: Compute the log norms of the weight matrices. | ||||
|   :param spectralnorms: Compute the spectral norm (max eigenvalue) of the weight matrices. | ||||
|   :param softranks: Compute the soft norm (i.e. StableRank) of the weight matrices. | ||||
|   :param normalize: Normalize or not. | ||||
|   :param glorot_fix: | ||||
|   :return: (a dict of all layers' results, a dict of the summarized info) | ||||
|   """ | ||||
|   names, modules = [], [] | ||||
|   for name, module in model.named_modules(): | ||||
|     if isinstance(module, available_module_types()): | ||||
|       names.append(name) | ||||
|       modules.append(module) | ||||
|   print('There are {:} layers to be analyzed in this model.'.format(len(modules))) | ||||
|   all_results = OrderedDict() | ||||
|   for index, module in enumerate(modules): | ||||
|     if isinstance(module, nn.Linear): | ||||
|       weights = [module.weight.cpu().detach().numpy()] | ||||
|     else: | ||||
|       weights = get_conv2D_Wmats(module.weight.cpu().detach().numpy()) | ||||
|     results = analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix) | ||||
|     results['id'] = index | ||||
|     results['type'] = type(module) | ||||
|     all_results[index] = results | ||||
|   summary = compute_details(all_results) | ||||
|   return all_results, summary | ||||
		Reference in New Issue
	
	Block a user