Update xmisc
This commit is contained in:
		| @@ -58,6 +58,7 @@ def main(args): | ||||
|         pin_memory=True, | ||||
|         drop_last=False, | ||||
|     ) | ||||
|     iters_per_epoch = len(train_data) // args.batch_size | ||||
|  | ||||
|     logger.log("The training loader: {:}".format(train_loader)) | ||||
|     logger.log("The validation loader: {:}".format(valid_loader)) | ||||
| @@ -67,159 +68,44 @@ def main(args): | ||||
|         lr=args.lr, | ||||
|         weight_decay=args.weight_decay, | ||||
|     ) | ||||
|     loss = xmisc.nested_call_by_yaml(args.loss_config) | ||||
|     objective = xmisc.nested_call_by_yaml(args.loss_config) | ||||
|  | ||||
|     logger.log("The optimizer is:\n{:}".format(optimizer)) | ||||
|     logger.log("The loss is {:}".format(loss)) | ||||
|     logger.log("The objective is {:}".format(objective)) | ||||
|     logger.log("The iters_per_epoch={:}".format(iters_per_epoch)) | ||||
|  | ||||
|     model, loss = torch.nn.DataParallel(model).cuda(), loss.cuda() | ||||
|     model, objective = torch.nn.DataParallel(model).cuda(), objective.cuda() | ||||
|     scheduler = xmisc.LRMultiplier( | ||||
|         optimizer, xmisc.get_scheduler(args.scheduler, args.lr), args.steps | ||||
|     ) | ||||
|  | ||||
|     import pdb | ||||
|  | ||||
|     pdb.set_trace() | ||||
|  | ||||
|     train_func, valid_func = get_procedures(args.procedure) | ||||
|  | ||||
|     total_epoch = optim_config.epochs + optim_config.warmup | ||||
|     # Main Training and Evaluation Loop | ||||
|     start_time = time.time() | ||||
|     epoch_time = AverageMeter() | ||||
|     for epoch in range(start_epoch, total_epoch): | ||||
|         scheduler.update(epoch, 0.0) | ||||
|     start_time, iter_time = time.time(), xmisc.AverageMeter() | ||||
|     for xiter, data in enumerate(train_loader): | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(epoch_time.avg * (total_epoch - epoch), True) | ||||
|         ) | ||||
|         epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch) | ||||
|         LRs = scheduler.get_lr() | ||||
|         find_best = False | ||||
|         # set-up drop-out ratio | ||||
|         if hasattr(base_model, "update_drop_path"): | ||||
|             base_model.update_drop_path( | ||||
|                 model_config.drop_path_prob * epoch / total_epoch | ||||
|             ) | ||||
|         logger.log( | ||||
|             "\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format( | ||||
|                 time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler | ||||
|             xmisc.time_utils.convert_secs2time( | ||||
|                 iter_time.avg * (len(train_loader) - xiter), True | ||||
|             ) | ||||
|         ) | ||||
|         iter_str = "{:6d}/{:06d}".format(xiter, len(train_loader)) | ||||
|  | ||||
|         # train for one epoch | ||||
|         train_loss, train_acc1, train_acc5 = train_func( | ||||
|             train_loader, | ||||
|             network, | ||||
|             criterion, | ||||
|             scheduler, | ||||
|             optimizer, | ||||
|             optim_config, | ||||
|             epoch_str, | ||||
|             args.print_freq, | ||||
|             logger, | ||||
|         ) | ||||
|         # log the results | ||||
|         logger.log( | ||||
|             "***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format( | ||||
|                 time_string(), epoch_str, train_loss, train_acc1, train_acc5 | ||||
|             ) | ||||
|         ) | ||||
|         inputs, targets = data | ||||
|         targets = targets.cuda(non_blocking=True) | ||||
|         model.train() | ||||
|  | ||||
|         # evaluate the performance | ||||
|         if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch): | ||||
|             logger.log("-" * 150) | ||||
|             valid_loss, valid_acc1, valid_acc5 = valid_func( | ||||
|                 valid_loader, | ||||
|                 network, | ||||
|                 criterion, | ||||
|                 optim_config, | ||||
|                 epoch_str, | ||||
|                 args.print_freq_eval, | ||||
|                 logger, | ||||
|             ) | ||||
|             valid_accuracies[epoch] = valid_acc1 | ||||
|             logger.log( | ||||
|                 "***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format( | ||||
|                     time_string(), | ||||
|                     epoch_str, | ||||
|                     valid_loss, | ||||
|                     valid_acc1, | ||||
|                     valid_acc5, | ||||
|                     valid_accuracies["best"], | ||||
|                     100 - valid_accuracies["best"], | ||||
|                 ) | ||||
|             ) | ||||
|             if valid_acc1 > valid_accuracies["best"]: | ||||
|                 valid_accuracies["best"] = valid_acc1 | ||||
|                 find_best = True | ||||
|                 logger.log( | ||||
|                     "Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format( | ||||
|                         epoch, | ||||
|                         valid_acc1, | ||||
|                         valid_acc5, | ||||
|                         100 - valid_acc1, | ||||
|                         100 - valid_acc5, | ||||
|                         model_best_path, | ||||
|                     ) | ||||
|                 ) | ||||
|             num_bytes = ( | ||||
|                 torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0 | ||||
|             ) | ||||
|             logger.log( | ||||
|                 "[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format( | ||||
|                     next(network.parameters()).device, | ||||
|                     int(num_bytes), | ||||
|                     num_bytes / 1e3, | ||||
|                     num_bytes / 1e6, | ||||
|                     num_bytes / 1e9, | ||||
|                 ) | ||||
|             ) | ||||
|             max_bytes[epoch] = num_bytes | ||||
|         if epoch % 10 == 0: | ||||
|             torch.cuda.empty_cache() | ||||
|         optimizer.zero_grad() | ||||
|         outputs = model(inputs) | ||||
|         loss = objective(outputs, targets) | ||||
|  | ||||
|         # save checkpoint | ||||
|         save_path = save_checkpoint( | ||||
|             { | ||||
|                 "epoch": epoch, | ||||
|                 "args": deepcopy(args), | ||||
|                 "max_bytes": deepcopy(max_bytes), | ||||
|                 "FLOP": flop, | ||||
|                 "PARAM": param, | ||||
|                 "valid_accuracies": deepcopy(valid_accuracies), | ||||
|                 "model-config": model_config._asdict(), | ||||
|                 "optim-config": optim_config._asdict(), | ||||
|                 "base-model": base_model.state_dict(), | ||||
|                 "scheduler": scheduler.state_dict(), | ||||
|                 "optimizer": optimizer.state_dict(), | ||||
|             }, | ||||
|             model_base_path, | ||||
|             logger, | ||||
|         ) | ||||
|         if find_best: | ||||
|             copy_checkpoint(model_base_path, model_best_path, logger) | ||||
|         last_info = save_checkpoint( | ||||
|             { | ||||
|                 "epoch": epoch, | ||||
|                 "args": deepcopy(args), | ||||
|                 "last_checkpoint": save_path, | ||||
|             }, | ||||
|             logger.path("info"), | ||||
|             logger, | ||||
|         ) | ||||
|         loss.backward() | ||||
|         optimizer.step() | ||||
|         scheduler.step() | ||||
|         if xiter % iters_per_epoch == 0: | ||||
|             logger.log("TRAIN [{:}] loss = {:.6f}".format(iter_str, loss.item())) | ||||
|  | ||||
|         # measure elapsed time | ||||
|         epoch_time.update(time.time() - start_time) | ||||
|         iter_time.update(time.time() - start_time) | ||||
|         start_time = time.time() | ||||
|  | ||||
|     logger.log("\n" + "-" * 200) | ||||
|     logger.log( | ||||
|         "Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format( | ||||
|             convert_secs2time(epoch_time.sum, True), | ||||
|             max(v for k, v in max_bytes.items()) / 1e6, | ||||
|             logger.path("info"), | ||||
|         ) | ||||
|     ) | ||||
|     logger.log("-" * 200 + "\n") | ||||
|     logger.close() | ||||
|  | ||||
| @@ -249,7 +135,7 @@ if __name__ == "__main__": | ||||
|     parser.add_argument("--weight_decay", type=float, help="The weight decay") | ||||
|     parser.add_argument("--scheduler", type=str, help="The scheduler indicator.") | ||||
|     parser.add_argument("--steps", type=int, help="The total number of steps.") | ||||
|     parser.add_argument("--batch_size", type=int, default=2, help="The batch size.") | ||||
|     parser.add_argument("--batch_size", type=int, default=256, help="The batch size.") | ||||
|     parser.add_argument("--workers", type=int, default=4, help="The number of workers") | ||||
|     # Random Seed | ||||
|     parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed") | ||||
|   | ||||
		Reference in New Issue
	
	Block a user