Update xmisc
This commit is contained in:
parent
98f981dd45
commit
248686820c
@ -17,6 +17,6 @@ kwargs:
|
||||
module_path: torchvision.transforms
|
||||
args: []
|
||||
kwargs:
|
||||
mean: (0.491, 0.482, 0.447)
|
||||
std: (0.247, 0.244, 0.262)
|
||||
mean: [0.491, 0.482, 0.447]
|
||||
std: [0.247, 0.244, 0.262]
|
||||
kwargs: {}
|
||||
|
@ -25,6 +25,6 @@ kwargs:
|
||||
module_path: torchvision.transforms
|
||||
args: []
|
||||
kwargs:
|
||||
mean: (0.491, 0.482, 0.447)
|
||||
std: (0.247, 0.244, 0.262)
|
||||
mean: [0.491, 0.482, 0.447]
|
||||
std: [0.247, 0.244, 0.262]
|
||||
kwargs: {}
|
||||
|
@ -58,6 +58,7 @@ def main(args):
|
||||
pin_memory=True,
|
||||
drop_last=False,
|
||||
)
|
||||
iters_per_epoch = len(train_data) // args.batch_size
|
||||
|
||||
logger.log("The training loader: {:}".format(train_loader))
|
||||
logger.log("The validation loader: {:}".format(valid_loader))
|
||||
@ -67,159 +68,44 @@ def main(args):
|
||||
lr=args.lr,
|
||||
weight_decay=args.weight_decay,
|
||||
)
|
||||
loss = xmisc.nested_call_by_yaml(args.loss_config)
|
||||
objective = xmisc.nested_call_by_yaml(args.loss_config)
|
||||
|
||||
logger.log("The optimizer is:\n{:}".format(optimizer))
|
||||
logger.log("The loss is {:}".format(loss))
|
||||
logger.log("The objective is {:}".format(objective))
|
||||
logger.log("The iters_per_epoch={:}".format(iters_per_epoch))
|
||||
|
||||
model, loss = torch.nn.DataParallel(model).cuda(), loss.cuda()
|
||||
model, objective = torch.nn.DataParallel(model).cuda(), objective.cuda()
|
||||
scheduler = xmisc.LRMultiplier(
|
||||
optimizer, xmisc.get_scheduler(args.scheduler, args.lr), args.steps
|
||||
)
|
||||
|
||||
import pdb
|
||||
|
||||
pdb.set_trace()
|
||||
|
||||
train_func, valid_func = get_procedures(args.procedure)
|
||||
|
||||
total_epoch = optim_config.epochs + optim_config.warmup
|
||||
# Main Training and Evaluation Loop
|
||||
start_time = time.time()
|
||||
epoch_time = AverageMeter()
|
||||
for epoch in range(start_epoch, total_epoch):
|
||||
scheduler.update(epoch, 0.0)
|
||||
start_time, iter_time = time.time(), xmisc.AverageMeter()
|
||||
for xiter, data in enumerate(train_loader):
|
||||
need_time = "Time Left: {:}".format(
|
||||
convert_secs2time(epoch_time.avg * (total_epoch - epoch), True)
|
||||
)
|
||||
epoch_str = "epoch={:03d}/{:03d}".format(epoch, total_epoch)
|
||||
LRs = scheduler.get_lr()
|
||||
find_best = False
|
||||
# set-up drop-out ratio
|
||||
if hasattr(base_model, "update_drop_path"):
|
||||
base_model.update_drop_path(
|
||||
model_config.drop_path_prob * epoch / total_epoch
|
||||
)
|
||||
logger.log(
|
||||
"\n***{:s}*** start {:s} {:s}, LR=[{:.6f} ~ {:.6f}], scheduler={:}".format(
|
||||
time_string(), epoch_str, need_time, min(LRs), max(LRs), scheduler
|
||||
xmisc.time_utils.convert_secs2time(
|
||||
iter_time.avg * (len(train_loader) - xiter), True
|
||||
)
|
||||
)
|
||||
iter_str = "{:6d}/{:06d}".format(xiter, len(train_loader))
|
||||
|
||||
# train for one epoch
|
||||
train_loss, train_acc1, train_acc5 = train_func(
|
||||
train_loader,
|
||||
network,
|
||||
criterion,
|
||||
scheduler,
|
||||
optimizer,
|
||||
optim_config,
|
||||
epoch_str,
|
||||
args.print_freq,
|
||||
logger,
|
||||
)
|
||||
# log the results
|
||||
logger.log(
|
||||
"***{:s}*** TRAIN [{:}] loss = {:.6f}, accuracy-1 = {:.2f}, accuracy-5 = {:.2f}".format(
|
||||
time_string(), epoch_str, train_loss, train_acc1, train_acc5
|
||||
)
|
||||
)
|
||||
inputs, targets = data
|
||||
targets = targets.cuda(non_blocking=True)
|
||||
model.train()
|
||||
|
||||
# evaluate the performance
|
||||
if (epoch % args.eval_frequency == 0) or (epoch + 1 == total_epoch):
|
||||
logger.log("-" * 150)
|
||||
valid_loss, valid_acc1, valid_acc5 = valid_func(
|
||||
valid_loader,
|
||||
network,
|
||||
criterion,
|
||||
optim_config,
|
||||
epoch_str,
|
||||
args.print_freq_eval,
|
||||
logger,
|
||||
)
|
||||
valid_accuracies[epoch] = valid_acc1
|
||||
logger.log(
|
||||
"***{:s}*** VALID [{:}] loss = {:.6f}, accuracy@1 = {:.2f}, accuracy@5 = {:.2f} | Best-Valid-Acc@1={:.2f}, Error@1={:.2f}".format(
|
||||
time_string(),
|
||||
epoch_str,
|
||||
valid_loss,
|
||||
valid_acc1,
|
||||
valid_acc5,
|
||||
valid_accuracies["best"],
|
||||
100 - valid_accuracies["best"],
|
||||
)
|
||||
)
|
||||
if valid_acc1 > valid_accuracies["best"]:
|
||||
valid_accuracies["best"] = valid_acc1
|
||||
find_best = True
|
||||
logger.log(
|
||||
"Currently, the best validation accuracy found at {:03d}-epoch :: acc@1={:.2f}, acc@5={:.2f}, error@1={:.2f}, error@5={:.2f}, save into {:}.".format(
|
||||
epoch,
|
||||
valid_acc1,
|
||||
valid_acc5,
|
||||
100 - valid_acc1,
|
||||
100 - valid_acc5,
|
||||
model_best_path,
|
||||
)
|
||||
)
|
||||
num_bytes = (
|
||||
torch.cuda.max_memory_cached(next(network.parameters()).device) * 1.0
|
||||
)
|
||||
logger.log(
|
||||
"[GPU-Memory-Usage on {:} is {:} bytes, {:.2f} KB, {:.2f} MB, {:.2f} GB.]".format(
|
||||
next(network.parameters()).device,
|
||||
int(num_bytes),
|
||||
num_bytes / 1e3,
|
||||
num_bytes / 1e6,
|
||||
num_bytes / 1e9,
|
||||
)
|
||||
)
|
||||
max_bytes[epoch] = num_bytes
|
||||
if epoch % 10 == 0:
|
||||
torch.cuda.empty_cache()
|
||||
optimizer.zero_grad()
|
||||
outputs = model(inputs)
|
||||
loss = objective(outputs, targets)
|
||||
|
||||
# save checkpoint
|
||||
save_path = save_checkpoint(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"args": deepcopy(args),
|
||||
"max_bytes": deepcopy(max_bytes),
|
||||
"FLOP": flop,
|
||||
"PARAM": param,
|
||||
"valid_accuracies": deepcopy(valid_accuracies),
|
||||
"model-config": model_config._asdict(),
|
||||
"optim-config": optim_config._asdict(),
|
||||
"base-model": base_model.state_dict(),
|
||||
"scheduler": scheduler.state_dict(),
|
||||
"optimizer": optimizer.state_dict(),
|
||||
},
|
||||
model_base_path,
|
||||
logger,
|
||||
)
|
||||
if find_best:
|
||||
copy_checkpoint(model_base_path, model_best_path, logger)
|
||||
last_info = save_checkpoint(
|
||||
{
|
||||
"epoch": epoch,
|
||||
"args": deepcopy(args),
|
||||
"last_checkpoint": save_path,
|
||||
},
|
||||
logger.path("info"),
|
||||
logger,
|
||||
)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
scheduler.step()
|
||||
if xiter % iters_per_epoch == 0:
|
||||
logger.log("TRAIN [{:}] loss = {:.6f}".format(iter_str, loss.item()))
|
||||
|
||||
# measure elapsed time
|
||||
epoch_time.update(time.time() - start_time)
|
||||
iter_time.update(time.time() - start_time)
|
||||
start_time = time.time()
|
||||
|
||||
logger.log("\n" + "-" * 200)
|
||||
logger.log(
|
||||
"Finish training/validation in {:} with Max-GPU-Memory of {:.2f} MB, and save final checkpoint into {:}".format(
|
||||
convert_secs2time(epoch_time.sum, True),
|
||||
max(v for k, v in max_bytes.items()) / 1e6,
|
||||
logger.path("info"),
|
||||
)
|
||||
)
|
||||
logger.log("-" * 200 + "\n")
|
||||
logger.close()
|
||||
|
||||
@ -249,7 +135,7 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--weight_decay", type=float, help="The weight decay")
|
||||
parser.add_argument("--scheduler", type=str, help="The scheduler indicator.")
|
||||
parser.add_argument("--steps", type=int, help="The total number of steps.")
|
||||
parser.add_argument("--batch_size", type=int, default=2, help="The batch size.")
|
||||
parser.add_argument("--batch_size", type=int, default=256, help="The batch size.")
|
||||
parser.add_argument("--workers", type=int, default=4, help="The number of workers")
|
||||
# Random Seed
|
||||
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||
|
@ -28,4 +28,5 @@ python ./exps/basic/xmain.py --save_dir ${save_dir} --rand_seed ${rseed} \
|
||||
--model_config ./configs/yaml.model/vit-cifar10.s0 \
|
||||
--optim_config ./configs/yaml.opt/vit.cifar \
|
||||
--loss_config ./configs/yaml.loss/cross-entropy \
|
||||
--batch_size 256 \
|
||||
--lr 0.003 --weight_decay 0.3 --scheduler warm-cos --steps 10000
|
||||
|
@ -201,7 +201,6 @@ class SuperMLPv2(SuperModule):
|
||||
self._hidden_multiplier = hidden_multiplier
|
||||
self._out_features = out_features
|
||||
self._drop_rate = drop
|
||||
self._params = nn.ParameterDict({})
|
||||
|
||||
self._create_linear(
|
||||
"fc1", self.in_features, int(self.in_features * self.hidden_multiplier)
|
||||
@ -226,26 +225,22 @@ class SuperMLPv2(SuperModule):
|
||||
return spaces.get_max(self._out_features)
|
||||
|
||||
def _create_linear(self, name, inC, outC):
|
||||
self._params["{:}_super_weight".format(name)] = torch.nn.Parameter(
|
||||
torch.Tensor(outC, inC)
|
||||
self.register_parameter(
|
||||
"{:}_super_weight".format(name), torch.nn.Parameter(torch.Tensor(outC, inC))
|
||||
)
|
||||
self._params["{:}_super_bias".format(name)] = torch.nn.Parameter(
|
||||
torch.Tensor(outC)
|
||||
self.register_parameter(
|
||||
"{:}_super_bias".format(name), torch.nn.Parameter(torch.Tensor(outC))
|
||||
)
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
nn.init.kaiming_uniform_(self._params["fc1_super_weight"], a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self._params["fc2_super_weight"], a=math.sqrt(5))
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(
|
||||
self._params["fc1_super_weight"]
|
||||
)
|
||||
nn.init.kaiming_uniform_(self.fc1_super_weight, a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self.fc2_super_weight, a=math.sqrt(5))
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.fc1_super_weight)
|
||||
bound = 1 / math.sqrt(fan_in)
|
||||
nn.init.uniform_(self._params["fc1_super_bias"], -bound, bound)
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(
|
||||
self._params["fc2_super_weight"]
|
||||
)
|
||||
nn.init.uniform_(self.fc1_super_bias, -bound, bound)
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self.fc2_super_weight)
|
||||
bound = 1 / math.sqrt(fan_in)
|
||||
nn.init.uniform_(self._params["fc2_super_bias"], -bound, bound)
|
||||
nn.init.uniform_(self.fc2_super_bias, -bound, bound)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
@ -282,8 +277,8 @@ class SuperMLPv2(SuperModule):
|
||||
else:
|
||||
hmul = spaces.get_determined_value(self._hidden_multiplier)
|
||||
hidden_dim = int(expected_input_dim * hmul)
|
||||
_fc1_weight = self._params["fc1_super_weight"][:hidden_dim, :expected_input_dim]
|
||||
_fc1_bias = self._params["fc1_super_bias"][:hidden_dim]
|
||||
_fc1_weight = self.fc1_super_weight[:hidden_dim, :expected_input_dim]
|
||||
_fc1_bias = self.fc1_super_bias[:hidden_dim]
|
||||
x = F.linear(input, _fc1_weight, _fc1_bias)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
@ -292,21 +287,17 @@ class SuperMLPv2(SuperModule):
|
||||
out_dim = self.abstract_child["_out_features"].value
|
||||
else:
|
||||
out_dim = spaces.get_determined_value(self._out_features)
|
||||
_fc2_weight = self._params["fc2_super_weight"][:out_dim, :hidden_dim]
|
||||
_fc2_bias = self._params["fc2_super_bias"][:out_dim]
|
||||
_fc2_weight = self.fc2_super_weight[:out_dim, :hidden_dim]
|
||||
_fc2_bias = self.fc2_super_bias[:out_dim]
|
||||
x = F.linear(x, _fc2_weight, _fc2_bias)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = F.linear(
|
||||
input, self._params["fc1_super_weight"], self._params["fc1_super_bias"]
|
||||
)
|
||||
x = F.linear(input, self.fc1_super_weight, self.fc1_super_bias)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = F.linear(
|
||||
x, self._params["fc2_super_weight"], self._params["fc2_super_bias"]
|
||||
)
|
||||
x = F.linear(x, self.fc2_super_weight, self.fc2_super_bias)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
|
@ -1,319 +0,0 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 #
|
||||
#####################################################
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
|
||||
import math
|
||||
from typing import Optional, Callable
|
||||
|
||||
from xautodl import spaces
|
||||
from .super_module import SuperModule
|
||||
from .super_module import IntSpaceType
|
||||
from .super_module import BoolSpaceType
|
||||
|
||||
|
||||
class SuperLinear(SuperModule):
|
||||
"""Applies a linear transformation to the incoming data: :math:`y = xA^T + b`"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: IntSpaceType,
|
||||
out_features: IntSpaceType,
|
||||
bias: BoolSpaceType = True,
|
||||
) -> None:
|
||||
super(SuperLinear, self).__init__()
|
||||
|
||||
# the raw input args
|
||||
self._in_features = in_features
|
||||
self._out_features = out_features
|
||||
self._bias = bias
|
||||
# weights to be optimized
|
||||
self.register_parameter(
|
||||
"_super_weight",
|
||||
torch.nn.Parameter(torch.Tensor(self.out_features, self.in_features)),
|
||||
)
|
||||
if self.bias:
|
||||
self.register_parameter(
|
||||
"_super_bias", torch.nn.Parameter(torch.Tensor(self.out_features))
|
||||
)
|
||||
else:
|
||||
self.register_parameter("_super_bias", None)
|
||||
self.reset_parameters()
|
||||
|
||||
@property
|
||||
def in_features(self):
|
||||
return spaces.get_max(self._in_features)
|
||||
|
||||
@property
|
||||
def out_features(self):
|
||||
return spaces.get_max(self._out_features)
|
||||
|
||||
@property
|
||||
def bias(self):
|
||||
return spaces.has_categorical(self._bias, True)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
if not spaces.is_determined(self._in_features):
|
||||
root_node.append(
|
||||
"_in_features", self._in_features.abstract(reuse_last=True)
|
||||
)
|
||||
if not spaces.is_determined(self._out_features):
|
||||
root_node.append(
|
||||
"_out_features", self._out_features.abstract(reuse_last=True)
|
||||
)
|
||||
if not spaces.is_determined(self._bias):
|
||||
root_node.append("_bias", self._bias.abstract(reuse_last=True))
|
||||
return root_node
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
nn.init.kaiming_uniform_(self._super_weight, a=math.sqrt(5))
|
||||
if self.bias:
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(self._super_weight)
|
||||
bound = 1 / math.sqrt(fan_in)
|
||||
nn.init.uniform_(self._super_bias, -bound, bound)
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# check inputs ->
|
||||
if not spaces.is_determined(self._in_features):
|
||||
expected_input_dim = self.abstract_child["_in_features"].value
|
||||
else:
|
||||
expected_input_dim = spaces.get_determined_value(self._in_features)
|
||||
if input.size(-1) != expected_input_dim:
|
||||
raise ValueError(
|
||||
"Expect the input dim of {:} instead of {:}".format(
|
||||
expected_input_dim, input.size(-1)
|
||||
)
|
||||
)
|
||||
# create the weight matrix
|
||||
if not spaces.is_determined(self._out_features):
|
||||
out_dim = self.abstract_child["_out_features"].value
|
||||
else:
|
||||
out_dim = spaces.get_determined_value(self._out_features)
|
||||
candidate_weight = self._super_weight[:out_dim, :expected_input_dim]
|
||||
# create the bias matrix
|
||||
if not spaces.is_determined(self._bias):
|
||||
if self.abstract_child["_bias"].value:
|
||||
candidate_bias = self._super_bias[:out_dim]
|
||||
else:
|
||||
candidate_bias = None
|
||||
else:
|
||||
if spaces.get_determined_value(self._bias):
|
||||
candidate_bias = self._super_bias[:out_dim]
|
||||
else:
|
||||
candidate_bias = None
|
||||
return F.linear(input, candidate_weight, candidate_bias)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return F.linear(input, self._super_weight, self._super_bias)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "in_features={:}, out_features={:}, bias={:}".format(
|
||||
self._in_features, self._out_features, self._bias
|
||||
)
|
||||
|
||||
def forward_with_container(self, input, container, prefix=[]):
|
||||
super_weight_name = ".".join(prefix + ["_super_weight"])
|
||||
super_weight = container.query(super_weight_name)
|
||||
super_bias_name = ".".join(prefix + ["_super_bias"])
|
||||
if container.has(super_bias_name):
|
||||
super_bias = container.query(super_bias_name)
|
||||
else:
|
||||
super_bias = None
|
||||
return F.linear(input, super_weight, super_bias)
|
||||
|
||||
|
||||
class SuperMLPv1(SuperModule):
|
||||
"""An MLP layer: FC -> Activation -> Drop -> FC -> Drop."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: IntSpaceType,
|
||||
hidden_features: IntSpaceType,
|
||||
out_features: IntSpaceType,
|
||||
act_layer: Callable[[], nn.Module] = nn.GELU,
|
||||
drop: Optional[float] = None,
|
||||
):
|
||||
super(SuperMLPv1, self).__init__()
|
||||
self._in_features = in_features
|
||||
self._hidden_features = hidden_features
|
||||
self._out_features = out_features
|
||||
self._drop_rate = drop
|
||||
self.fc1 = SuperLinear(in_features, hidden_features)
|
||||
self.act = act_layer()
|
||||
self.fc2 = SuperLinear(hidden_features, out_features)
|
||||
self.drop = nn.Dropout(drop or 0.0)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
space_fc1 = self.fc1.abstract_search_space
|
||||
space_fc2 = self.fc2.abstract_search_space
|
||||
if not spaces.is_determined(space_fc1):
|
||||
root_node.append("fc1", space_fc1)
|
||||
if not spaces.is_determined(space_fc2):
|
||||
root_node.append("fc2", space_fc2)
|
||||
return root_node
|
||||
|
||||
def apply_candidate(self, abstract_child: spaces.VirtualNode):
|
||||
super(SuperMLPv1, self).apply_candidate(abstract_child)
|
||||
if "fc1" in abstract_child:
|
||||
self.fc1.apply_candidate(abstract_child["fc1"])
|
||||
if "fc2" in abstract_child:
|
||||
self.fc2.apply_candidate(abstract_child["fc2"])
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
return self.forward_raw(input)
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = self.fc1(input)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = self.fc2(x)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "in_features={:}, hidden_features={:}, out_features={:}, drop={:}, fc1 -> act -> drop -> fc2 -> drop,".format(
|
||||
self._in_features,
|
||||
self._hidden_features,
|
||||
self._out_features,
|
||||
self._drop_rate,
|
||||
)
|
||||
|
||||
|
||||
class SuperMLPv2(SuperModule):
|
||||
"""An MLP layer: FC -> Activation -> Drop -> FC -> Drop."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_features: IntSpaceType,
|
||||
hidden_multiplier: IntSpaceType,
|
||||
out_features: IntSpaceType,
|
||||
act_layer: Callable[[], nn.Module] = nn.GELU,
|
||||
drop: Optional[float] = None,
|
||||
):
|
||||
super(SuperMLPv2, self).__init__()
|
||||
self._in_features = in_features
|
||||
self._hidden_multiplier = hidden_multiplier
|
||||
self._out_features = out_features
|
||||
self._drop_rate = drop
|
||||
self._params = nn.ParameterDict({})
|
||||
|
||||
self._create_linear(
|
||||
"fc1", self.in_features, int(self.in_features * self.hidden_multiplier)
|
||||
)
|
||||
self._create_linear(
|
||||
"fc2", int(self.in_features * self.hidden_multiplier), self.out_features
|
||||
)
|
||||
self.act = act_layer()
|
||||
self.drop = nn.Dropout(drop or 0.0)
|
||||
self.reset_parameters()
|
||||
|
||||
@property
|
||||
def in_features(self):
|
||||
return spaces.get_max(self._in_features)
|
||||
|
||||
@property
|
||||
def hidden_multiplier(self):
|
||||
return spaces.get_max(self._hidden_multiplier)
|
||||
|
||||
@property
|
||||
def out_features(self):
|
||||
return spaces.get_max(self._out_features)
|
||||
|
||||
def _create_linear(self, name, inC, outC):
|
||||
self._params["{:}_super_weight".format(name)] = torch.nn.Parameter(
|
||||
torch.Tensor(outC, inC)
|
||||
)
|
||||
self._params["{:}_super_bias".format(name)] = torch.nn.Parameter(
|
||||
torch.Tensor(outC)
|
||||
)
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
nn.init.kaiming_uniform_(self._params["fc1_super_weight"], a=math.sqrt(5))
|
||||
nn.init.kaiming_uniform_(self._params["fc2_super_weight"], a=math.sqrt(5))
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(
|
||||
self._params["fc1_super_weight"]
|
||||
)
|
||||
bound = 1 / math.sqrt(fan_in)
|
||||
nn.init.uniform_(self._params["fc1_super_bias"], -bound, bound)
|
||||
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(
|
||||
self._params["fc2_super_weight"]
|
||||
)
|
||||
bound = 1 / math.sqrt(fan_in)
|
||||
nn.init.uniform_(self._params["fc2_super_bias"], -bound, bound)
|
||||
|
||||
@property
|
||||
def abstract_search_space(self):
|
||||
root_node = spaces.VirtualNode(id(self))
|
||||
if not spaces.is_determined(self._in_features):
|
||||
root_node.append(
|
||||
"_in_features", self._in_features.abstract(reuse_last=True)
|
||||
)
|
||||
if not spaces.is_determined(self._hidden_multiplier):
|
||||
root_node.append(
|
||||
"_hidden_multiplier", self._hidden_multiplier.abstract(reuse_last=True)
|
||||
)
|
||||
if not spaces.is_determined(self._out_features):
|
||||
root_node.append(
|
||||
"_out_features", self._out_features.abstract(reuse_last=True)
|
||||
)
|
||||
return root_node
|
||||
|
||||
def forward_candidate(self, input: torch.Tensor) -> torch.Tensor:
|
||||
# check inputs ->
|
||||
if not spaces.is_determined(self._in_features):
|
||||
expected_input_dim = self.abstract_child["_in_features"].value
|
||||
else:
|
||||
expected_input_dim = spaces.get_determined_value(self._in_features)
|
||||
if input.size(-1) != expected_input_dim:
|
||||
raise ValueError(
|
||||
"Expect the input dim of {:} instead of {:}".format(
|
||||
expected_input_dim, input.size(-1)
|
||||
)
|
||||
)
|
||||
# create the weight and bias matrix for fc1
|
||||
if not spaces.is_determined(self._hidden_multiplier):
|
||||
hmul = self.abstract_child["_hidden_multiplier"].value * expected_input_dim
|
||||
else:
|
||||
hmul = spaces.get_determined_value(self._hidden_multiplier)
|
||||
hidden_dim = int(expected_input_dim * hmul)
|
||||
_fc1_weight = self._params["fc1_super_weight"][:hidden_dim, :expected_input_dim]
|
||||
_fc1_bias = self._params["fc1_super_bias"][:hidden_dim]
|
||||
x = F.linear(input, _fc1_weight, _fc1_bias)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
# create the weight and bias matrix for fc2
|
||||
if not spaces.is_determined(self._out_features):
|
||||
out_dim = self.abstract_child["_out_features"].value
|
||||
else:
|
||||
out_dim = spaces.get_determined_value(self._out_features)
|
||||
_fc2_weight = self._params["fc2_super_weight"][:out_dim, :hidden_dim]
|
||||
_fc2_bias = self._params["fc2_super_bias"][:out_dim]
|
||||
x = F.linear(x, _fc2_weight, _fc2_bias)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
def forward_raw(self, input: torch.Tensor) -> torch.Tensor:
|
||||
x = F.linear(
|
||||
input, self._params["fc1_super_weight"], self._params["fc1_super_bias"]
|
||||
)
|
||||
x = self.act(x)
|
||||
x = self.drop(x)
|
||||
x = F.linear(
|
||||
x, self._params["fc2_super_weight"], self._params["fc2_super_bias"]
|
||||
)
|
||||
x = self.drop(x)
|
||||
return x
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "in_features={:}, hidden_multiplier={:}, out_features={:}, drop={:}, fc1 -> act -> drop -> fc2 -> drop,".format(
|
||||
self._in_features,
|
||||
self._hidden_multiplier,
|
||||
self._out_features,
|
||||
self._drop_rate,
|
||||
)
|
@ -1,6 +1,7 @@
|
||||
#####################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.06 #
|
||||
#####################################################
|
||||
"""The module and yaml related functions."""
|
||||
from .module_utils import call_by_dict
|
||||
from .module_utils import call_by_yaml
|
||||
from .module_utils import nested_call_by_dict
|
||||
@ -11,10 +12,13 @@ from .torch_utils import count_parameters
|
||||
|
||||
from .logger_utils import Logger
|
||||
|
||||
# sampler
|
||||
"""The data sampler related classes."""
|
||||
from .sampler_utils import BatchSampler
|
||||
|
||||
# scheduler related
|
||||
"""The meter related classes."""
|
||||
from .meter_utils import AverageMeter
|
||||
|
||||
"""The scheduler related classes."""
|
||||
from .scheduler_utils import CosineParamScheduler, WarmupParamScheduler, LRMultiplier
|
||||
|
||||
|
||||
|
22
xautodl/xmisc/meter_utils.py
Normal file
22
xautodl/xmisc/meter_utils.py
Normal file
@ -0,0 +1,22 @@
|
||||
class AverageMeter:
|
||||
"""Computes and stores the average and current value"""
|
||||
|
||||
def __init__(self):
|
||||
self.reset()
|
||||
|
||||
def reset(self):
|
||||
self.val = 0.0
|
||||
self.avg = 0.0
|
||||
self.sum = 0.0
|
||||
self.count = 0.0
|
||||
|
||||
def update(self, val, n=1):
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(val={val}, avg={avg}, count={count})".format(
|
||||
name=self.__class__.__name__, **self.__dict__
|
||||
)
|
Loading…
Reference in New Issue
Block a user