Update LFNA

This commit is contained in:
D-X-Y 2021-05-23 06:22:05 +00:00
parent df9917371e
commit 2a864ae705
4 changed files with 56 additions and 84 deletions

View File

@ -9,4 +9,4 @@
- [2020.10.15] [446262a](https://github.com/D-X-Y/AutoDL-Projects/tree/446262a) Update NATS-BENCH to version 1.0
- [2020.12.20] [dae387a](https://github.com/D-X-Y/AutoDL-Projects/tree/dae387a) Update NATS-BENCH to version 1.1
- [2021.05.18] [98fadf8](https://github.com/D-X-Y/AutoDL-Projects/tree/98fadf8) Before moving to `xautodl`
- [2021.05.21] [8109ed1](https://github.com/D-X-Y/AutoDL-Projects/tree/8109ed1) `xautodl` is close to ready
- [2021.05.21] [df99173](https://github.com/D-X-Y/AutoDL-Projects/tree/df99173) `xautodl` is close to ready

View File

@ -93,6 +93,38 @@ def epoch_evaluate(loader, meta_model, base_model, criterion, device, logger):
return loss_meter
def online_evaluate(env, meta_model, base_model, criterion, args, logger):
logger.log("Online evaluate: {:}".format(env))
for idx, (timestamp, (future_x, future_y)) in enumerate(env):
future_time = timestamp.item()
time_seqs = [
future_time - iseq * env.timestamp_interval
for iseq in range(args.seq_length * 2)
]
time_seqs.reverse()
with torch.no_grad():
meta_model.eval()
base_model.eval()
time_seqs = torch.Tensor(time_seqs).view(1, -1).to(args.device)
[seq_containers], _ = meta_model(time_seqs, None)
future_container = seq_containers[-2]
_, (future_x, future_y) = env(time_seqs[0, -2].item())
future_x, future_y = future_x.to(args.device), future_y.to(args.device)
future_y_hat = base_model.forward_with_container(future_x, future_container)
future_loss = criterion(future_y_hat, future_y)
logger.log(
"[ONLINE] [{:03d}/{:03d}] loss={:.4f}".format(
idx, len(env), future_loss.item()
)
)
import pdb
pdb.set_trace()
for iseq in range(args.seq_length):
time_seqs.append(future_time - iseq * eval_env.timestamp_interval)
print("-")
def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
base_model.train()
meta_model.train()
@ -176,7 +208,7 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
)
+ ", batch={:}".format(len(total_meta_v1_losses))
+ ", success={:}, best={:.4f}".format(success, -best_score)
+ ", LS={:}/{:}".format(last_success_epoch - iepoch, early_stop_thresh)
+ ", LS={:}/{:}".format(iepoch - last_success_epoch, early_stop_thresh)
+ ", {:}".format(left_time)
)
if success:
@ -194,77 +226,6 @@ def pretrain_v2(base_model, meta_model, criterion, xenv, args, logger):
logger.log("Save the best model into {:}".format(final_best_name))
def pretrain_v1(base_model, meta_model, criterion, xenv, args, logger):
base_model.train()
meta_model.train()
optimizer = torch.optim.Adam(
meta_model.parameters(),
lr=args.lr,
weight_decay=args.weight_decay,
amsgrad=True,
)
logger.log("Pre-train the meta-model's embeddings")
logger.log("Using the optimizer: {:}".format(optimizer))
meta_model.set_best_dir(logger.path(None) / "ckps-pretrain-v1")
meta_model.set_best_name("pretrain-{:}.pth".format(args.rand_seed))
per_epoch_time, start_time = AverageMeter(), time.time()
last_success_epoch, early_stop_thresh = 0, args.pretrain_early_stop_thresh
for iepoch in range(args.epochs):
left_time = "Time Left: {:}".format(
convert_secs2time(per_epoch_time.avg * (args.epochs - iepoch), True)
)
losses = []
optimizer.zero_grad()
for ibatch in range(args.meta_batch):
rand_index = random.randint(0, meta_model.meta_length - xenv.seq_length - 1)
timestamps = meta_model.meta_timestamps[
rand_index : rand_index + xenv.seq_length
]
seq_timestamps, (seq_inputs, seq_targets) = xenv.seq_call(timestamps)
time_embeds = meta_model.super_meta_embed[
rand_index : rand_index + xenv.seq_length
]
[seq_containers], time_embeds = meta_model(
None, torch.unsqueeze(time_embeds, dim=0)
)
seq_inputs, seq_targets = seq_inputs.to(args.device), seq_targets.to(
args.device
)
for container, inputs, targets in zip(
seq_containers, seq_inputs, seq_targets
):
predictions = base_model.forward_with_container(inputs, container)
loss = criterion(predictions, targets)
losses.append(loss)
final_loss = torch.stack(losses).mean()
final_loss.backward()
optimizer.step()
# success
success, best_score = meta_model.save_best(-final_loss.item())
logger.log(
"{:} [Pre-V1 {:04d}/{:}] loss : {:.5f}".format(
time_string(),
iepoch,
args.epochs,
final_loss.item(),
)
+ ", batch={:}".format(len(losses))
+ ", success={:}, best={:.4f}".format(success, -best_score)
+ ", LS={:}/{:}".format(last_success_epoch - iepoch, early_stop_thresh)
+ " {:}".format(left_time)
)
if success:
last_success_epoch = iepoch
if iepoch - last_success_epoch >= early_stop_thresh:
logger.log("Early stop the pre-training at {:}".format(iepoch))
break
per_epoch_time.update(time.time() - start_time)
start_time = time.time()
meta_model.load_best()
def main(args):
logger, env_info, model_kwargs = lfna_setup(args)
train_env = get_synthetic_env(mode="train", version=args.env_version)
@ -290,7 +251,7 @@ def main(args):
batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge)
train_env.reset_max_seq_length(args.seq_length)
valid_env.reset_max_seq_length(args.seq_length)
# valid_env.reset_max_seq_length(args.seq_length)
valid_env_loader = torch.utils.data.DataLoader(
valid_env,
batch_size=args.meta_batch,
@ -306,6 +267,11 @@ def main(args):
)
pretrain_v2(base_model, meta_model, criterion, train_env, args, logger)
# try to evaluate once
online_evaluate(valid_env, meta_model, base_model, criterion, args, logger)
import pdb
pdb.set_trace()
optimizer = torch.optim.Adam(
meta_model.get_parameters(True, True, False), # fix hypernet
lr=args.lr,
@ -558,7 +524,7 @@ if __name__ == "__main__":
parser.add_argument(
"--pretrain_early_stop_thresh",
type=int,
default=200,
default=300,
help="The #epochs for early stop.",
)
parser.add_argument(

View File

@ -22,6 +22,7 @@ class LFNA_Meta(super_core.SuperModule):
meta_timestamps,
mha_depth: int = 2,
dropout: float = 0.1,
thresh: float = 0.05,
):
super(LFNA_Meta, self).__init__()
self._shape_container = shape_container
@ -30,6 +31,7 @@ class LFNA_Meta(super_core.SuperModule):
for ilayer in range(self._num_layers):
self._numel_per_layer.append(shape_container[ilayer].numel())
self._raw_meta_timestamps = meta_timestamps
self._thresh = thresh
self.register_parameter(
"_super_layer_embed",
@ -168,7 +170,14 @@ class LFNA_Meta(super_core.SuperModule):
timestamp_k_embed = self._tscalar_embed(meta_timestamps.view(1, -1))
timestamp_v_embed = meta_embeds.unsqueeze(dim=0)
# create the mask
mask = torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1)
mask = (
torch.unsqueeze(timestamps, dim=-1) <= meta_timestamps.view(1, 1, -1)
) | (
torch.abs(
torch.unsqueeze(timestamps, dim=-1) - meta_timestamps.view(1, 1, -1)
)
> self._thresh
)
timestamp_embeds = self._trans_att(
timestamp_q_embed, timestamp_k_embed, timestamp_v_embed, mask
)

View File

@ -117,17 +117,14 @@ class SuperModule(abc.ABC, nn.Module):
else:
return False, self._meta_info[BEST_SCORE_KEY]
def load_best(self, best_save_path=None):
if best_save_path is None:
if (
BEST_DIR_KEY not in self._meta_info
or BEST_SCORE_KEY not in self._meta_info
):
raise ValueError("Please call save_best at first")
def load_best(self, best_save_name=None):
if BEST_DIR_KEY not in self._meta_info:
raise ValueError("Please set BEST_DIR_KEY at first")
if best_save_name is None:
best_save_name = self._meta_info.get(
BEST_NAME_KEY, "best-{:}.pth".format(self.__class__.__name__)
)
best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name)
best_save_path = os.path.join(self._meta_info[BEST_DIR_KEY], best_save_name)
state_dict = torch.load(best_save_path)
self.load_state_dict(state_dict)