Update vis codes
This commit is contained in:
parent
1209fffbaa
commit
3117d4f5f5
@ -7,7 +7,7 @@ import os, sys, copy, random
|
|||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import argparse
|
import argparse
|
||||||
from collections import OrderedDict
|
from collections import OrderedDict, defaultdict
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
from pprint import pprint
|
from pprint import pprint
|
||||||
@ -27,6 +27,12 @@ if str(lib_dir) not in sys.path:
|
|||||||
from datasets.synthetic_core import get_synthetic_env
|
from datasets.synthetic_core import get_synthetic_env
|
||||||
from datasets.synthetic_example import create_example_v1
|
from datasets.synthetic_example import create_example_v1
|
||||||
from utils.temp_sync import optimize_fn, evaluate_fn
|
from utils.temp_sync import optimize_fn, evaluate_fn
|
||||||
|
from procedures.metric_utils import MSEMetric
|
||||||
|
|
||||||
|
|
||||||
|
def plot_scatter(cur_ax, xs, ys, color, alpha, linewidths, label=None):
|
||||||
|
cur_ax.scatter([-100], [-100], color=color, linewidths=linewidths, label=label)
|
||||||
|
cur_ax.scatter(xs, ys, color=color, alpha=alpha, linewidths=1.5, label=None)
|
||||||
|
|
||||||
|
|
||||||
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
||||||
@ -44,16 +50,17 @@ def draw_multi_fig(save_dir, timestamp, scatter_list, wh, fig_title=None):
|
|||||||
|
|
||||||
for idx, scatter_dict in enumerate(scatter_list):
|
for idx, scatter_dict in enumerate(scatter_list):
|
||||||
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
cur_ax = fig.add_subplot(len(scatter_list), 1, idx + 1)
|
||||||
cur_ax.scatter(
|
plot_scatter(
|
||||||
|
cur_ax,
|
||||||
scatter_dict["xaxis"],
|
scatter_dict["xaxis"],
|
||||||
scatter_dict["yaxis"],
|
scatter_dict["yaxis"],
|
||||||
color=scatter_dict["color"],
|
scatter_dict["color"],
|
||||||
s=scatter_dict["s"],
|
scatter_dict["alpha"],
|
||||||
alpha=scatter_dict["alpha"],
|
scatter_dict["linewidths"],
|
||||||
label=scatter_dict["label"],
|
scatter_dict["label"],
|
||||||
)
|
)
|
||||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||||
cur_ax.set_ylabel("f(X)", rotation=0, fontsize=LabelSize)
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||||
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
cur_ax.set_xlim(scatter_dict["xlim"][0], scatter_dict["xlim"][1])
|
||||||
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
cur_ax.set_ylim(scatter_dict["ylim"][0], scatter_dict["ylim"][1])
|
||||||
for tick in cur_ax.xaxis.get_major_ticks():
|
for tick in cur_ax.xaxis.get_major_ticks():
|
||||||
@ -120,7 +127,7 @@ def compare_cl(save_dir):
|
|||||||
"xaxis": xdata["lfna_xaxis_all"],
|
"xaxis": xdata["lfna_xaxis_all"],
|
||||||
"yaxis": xdata["lfna_yaxis_all"],
|
"yaxis": xdata["lfna_yaxis_all"],
|
||||||
"color": "k",
|
"color": "k",
|
||||||
"s": 12,
|
"linewidths": 15,
|
||||||
"alpha": 0.99,
|
"alpha": 0.99,
|
||||||
"xlim": (-6, 6),
|
"xlim": (-6, 6),
|
||||||
"ylim": (-40, 40),
|
"ylim": (-40, 40),
|
||||||
@ -140,7 +147,7 @@ def compare_cl(save_dir):
|
|||||||
"xaxis": cl_xaxis_all,
|
"xaxis": cl_xaxis_all,
|
||||||
"yaxis": cl_yaxis_all,
|
"yaxis": cl_yaxis_all,
|
||||||
"color": "k",
|
"color": "k",
|
||||||
"s": 12,
|
"linewidths": 15,
|
||||||
"xlim": (round(cl_xaxis_min, 1), round(cl_xaxis_max, 1)),
|
"xlim": (round(cl_xaxis_min, 1), round(cl_xaxis_max, 1)),
|
||||||
"ylim": (-20, 6),
|
"ylim": (-20, 6),
|
||||||
"alpha": 0.99,
|
"alpha": 0.99,
|
||||||
@ -167,7 +174,7 @@ def compare_cl(save_dir):
|
|||||||
)
|
)
|
||||||
print(video_cmd + "\n")
|
print(video_cmd + "\n")
|
||||||
os.system(video_cmd)
|
os.system(video_cmd)
|
||||||
os.system("{:} -pix_fmt yuv420p {xdir}/vis.webm".format(base_cmd, xdir=save_dir))
|
os.system("{:} -pix_fmt yuv420p {xdir}/compare-cl.webm".format(base_cmd, xdir=save_dir))
|
||||||
|
|
||||||
|
|
||||||
def visualize_env(save_dir):
|
def visualize_env(save_dir):
|
||||||
@ -184,15 +191,7 @@ def visualize_env(save_dir):
|
|||||||
|
|
||||||
cur_ax = fig.add_subplot(1, 1, 1)
|
cur_ax = fig.add_subplot(1, 1, 1)
|
||||||
allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
|
allx, ally = allx[:, 0].numpy(), ally[:, 0].numpy()
|
||||||
cur_ax.scatter(
|
plot_scatter(cur_ax, allx, ally, "k", 0.99, 15, "timestamp={:05d}".format(idx))
|
||||||
allx,
|
|
||||||
ally,
|
|
||||||
color="k",
|
|
||||||
linestyle="-",
|
|
||||||
alpha=0.99,
|
|
||||||
s=10,
|
|
||||||
label="timestamp={:05d}".format(idx),
|
|
||||||
)
|
|
||||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||||
for tick in cur_ax.xaxis.get_major_ticks():
|
for tick in cur_ax.xaxis.get_major_ticks():
|
||||||
@ -228,11 +227,15 @@ def compare_algs(save_dir, alg_dir="./outputs/lfna-synthetic"):
|
|||||||
assert cache_path.exists(), "{:} does not exist".format(cache_path)
|
assert cache_path.exists(), "{:} does not exist".format(cache_path)
|
||||||
env_info = torch.load(cache_path)
|
env_info = torch.load(cache_path)
|
||||||
|
|
||||||
alg_name2dir = {"Optimal": "use-same-timestamp", "History SL": "use-all-past-data"}
|
alg_name2dir = OrderedDict()
|
||||||
|
alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||||
|
alg_name2dir["History SL"] = "use-all-past-data"
|
||||||
colors = ["r", "g"]
|
colors = ["r", "g"]
|
||||||
|
|
||||||
dynamic_env = env_info["dynamic_env"]
|
dynamic_env = env_info["dynamic_env"]
|
||||||
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
||||||
|
|
||||||
|
linewidths = 10
|
||||||
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
||||||
tqdm(dynamic_env, ncols=50)
|
tqdm(dynamic_env, ncols=50)
|
||||||
):
|
):
|
||||||
@ -243,14 +246,7 @@ def compare_algs(save_dir, alg_dir="./outputs/lfna-synthetic"):
|
|||||||
|
|
||||||
# the data
|
# the data
|
||||||
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
|
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
|
||||||
cur_ax.scatter(
|
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
|
||||||
allx,
|
|
||||||
ally,
|
|
||||||
color="k",
|
|
||||||
alpha=0.99,
|
|
||||||
s=10,
|
|
||||||
label=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||||
ckp_path = (
|
ckp_path = (
|
||||||
@ -263,14 +259,7 @@ def compare_algs(save_dir, alg_dir="./outputs/lfna-synthetic"):
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
predicts = ckp_data["model"](ori_allx)
|
predicts = ckp_data["model"](ori_allx)
|
||||||
predicts = predicts.cpu().view(-1).numpy()
|
predicts = predicts.cpu().view(-1).numpy()
|
||||||
cur_ax.scatter(
|
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
|
||||||
allx,
|
|
||||||
predicts,
|
|
||||||
color=colors[idx_alg],
|
|
||||||
alpha=0.99,
|
|
||||||
s=20,
|
|
||||||
label=alg,
|
|
||||||
)
|
|
||||||
|
|
||||||
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||||
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||||
@ -291,9 +280,105 @@ def compare_algs(save_dir, alg_dir="./outputs/lfna-synthetic"):
|
|||||||
base_cmd = "ffmpeg -y -i {xdir}/%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
|
base_cmd = "ffmpeg -y -i {xdir}/%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
|
||||||
xdir=save_dir, w=width, h=height
|
xdir=save_dir, w=width, h=height
|
||||||
)
|
)
|
||||||
os.system("{:} {xdir}/compare_alg.mp4".format(base_cmd, xdir=save_dir))
|
os.system("{:} {xdir}/compare-alg.mp4".format(base_cmd, xdir=save_dir))
|
||||||
os.system("{:} {xdir}/compare_alg.webm".format(base_cmd, xdir=save_dir))
|
os.system("{:} {xdir}/compare-alg.webm".format(base_cmd, xdir=save_dir))
|
||||||
# the trajectory data
|
|
||||||
|
|
||||||
|
def compare_algs_v2(save_dir, alg_dir="./outputs/lfna-synthetic"):
|
||||||
|
save_dir = Path(str(save_dir))
|
||||||
|
save_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
|
dpi, width, height = 30, 3200, 2000
|
||||||
|
figsize = width / float(dpi), height / float(dpi)
|
||||||
|
LabelSize, LegendFontsize, font_gap = 80, 80, 5
|
||||||
|
|
||||||
|
cache_path = Path(alg_dir) / "env-info.pth"
|
||||||
|
assert cache_path.exists(), "{:} does not exist".format(cache_path)
|
||||||
|
env_info = torch.load(cache_path)
|
||||||
|
|
||||||
|
alg_name2dir = OrderedDict()
|
||||||
|
alg_name2dir["Optimal"] = "use-same-timestamp"
|
||||||
|
alg_name2dir["History SL"] = "use-all-past-data"
|
||||||
|
colors = ["r", "g"]
|
||||||
|
|
||||||
|
alg2xs, alg2ys = defaultdict(list), defaultdict(list)
|
||||||
|
colors = ["r", "g"]
|
||||||
|
|
||||||
|
dynamic_env = env_info["dynamic_env"]
|
||||||
|
min_t, max_t = dynamic_env.min_timestamp, dynamic_env.max_timestamp
|
||||||
|
|
||||||
|
|
||||||
|
linewidths = 10
|
||||||
|
for idx, (timestamp, (ori_allx, ori_ally)) in enumerate(
|
||||||
|
tqdm(dynamic_env, ncols=50)
|
||||||
|
):
|
||||||
|
if idx == 0:
|
||||||
|
continue
|
||||||
|
fig = plt.figure(figsize=figsize)
|
||||||
|
cur_ax = fig.add_subplot(2, 1, 1)
|
||||||
|
|
||||||
|
# the data
|
||||||
|
allx, ally = ori_allx[:, 0].numpy(), ori_ally[:, 0].numpy()
|
||||||
|
plot_scatter(cur_ax, allx, ally, "k", 0.99, linewidths, "Raw Data")
|
||||||
|
|
||||||
|
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||||
|
ckp_path = (
|
||||||
|
Path(alg_dir)
|
||||||
|
/ xdir
|
||||||
|
/ "{:04d}-{:04d}.pth".format(idx, env_info["total"])
|
||||||
|
)
|
||||||
|
assert ckp_path.exists()
|
||||||
|
ckp_data = torch.load(ckp_path)
|
||||||
|
with torch.no_grad():
|
||||||
|
predicts = ckp_data["model"](ori_allx)
|
||||||
|
predicts = predicts.cpu()
|
||||||
|
# keep data
|
||||||
|
metric = MSEMetric()
|
||||||
|
metric(predicts, ori_ally)
|
||||||
|
predicts = predicts.view(-1).numpy()
|
||||||
|
alg2xs[alg].append(idx)
|
||||||
|
alg2ys[alg].append(metric.get_info()['mse'])
|
||||||
|
plot_scatter(cur_ax, allx, predicts, colors[idx_alg], 0.99, linewidths, alg)
|
||||||
|
|
||||||
|
cur_ax.set_xlabel("X", fontsize=LabelSize)
|
||||||
|
cur_ax.set_ylabel("Y", rotation=0, fontsize=LabelSize)
|
||||||
|
for tick in cur_ax.xaxis.get_major_ticks():
|
||||||
|
tick.label.set_fontsize(LabelSize - font_gap)
|
||||||
|
tick.label.set_rotation(10)
|
||||||
|
for tick in cur_ax.yaxis.get_major_ticks():
|
||||||
|
tick.label.set_fontsize(LabelSize - font_gap)
|
||||||
|
cur_ax.set_xlim(-10, 10)
|
||||||
|
cur_ax.set_ylim(-60, 60)
|
||||||
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||||
|
|
||||||
|
# the trajectory data
|
||||||
|
cur_ax = fig.add_subplot(2, 1, 2)
|
||||||
|
for idx_alg, (alg, xdir) in enumerate(alg_name2dir.items()):
|
||||||
|
# plot_scatter(cur_ax, alg2xs[alg], alg2ys[alg], olors[idx_alg], 0.99, linewidths, alg)
|
||||||
|
cur_ax.plot(alg2xs[alg], alg2ys[alg], color=colors[idx_alg], linestyle='-', linewidth=5, label=alg)
|
||||||
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||||
|
|
||||||
|
cur_ax.set_xlabel("Timestamp", fontsize=LabelSize)
|
||||||
|
cur_ax.set_ylabel("MSE", fontsize=LabelSize)
|
||||||
|
for tick in cur_ax.xaxis.get_major_ticks():
|
||||||
|
tick.label.set_fontsize(LabelSize - font_gap)
|
||||||
|
tick.label.set_rotation(10)
|
||||||
|
for tick in cur_ax.yaxis.get_major_ticks():
|
||||||
|
tick.label.set_fontsize(LabelSize - font_gap)
|
||||||
|
cur_ax.set_xlim(1, len(dynamic_env))
|
||||||
|
cur_ax.set_ylim(0, 10)
|
||||||
|
cur_ax.legend(loc=1, fontsize=LegendFontsize)
|
||||||
|
|
||||||
|
save_path = save_dir / "{:05d}".format(idx)
|
||||||
|
fig.savefig(str(save_path) + ".pdf", dpi=dpi, bbox_inches="tight", format="pdf")
|
||||||
|
fig.savefig(str(save_path) + ".png", dpi=dpi, bbox_inches="tight", format="png")
|
||||||
|
plt.close("all")
|
||||||
|
save_dir = save_dir.resolve()
|
||||||
|
base_cmd = "ffmpeg -y -i {xdir}/%05d.png -vf scale={w}:{h} -pix_fmt yuv420p -vb 5000k".format(
|
||||||
|
xdir=save_dir, w=width, h=height
|
||||||
|
)
|
||||||
|
os.system("{:} {xdir}/compare-alg.mp4".format(base_cmd, xdir=save_dir))
|
||||||
|
os.system("{:} {xdir}/compare-alg.webm".format(base_cmd, xdir=save_dir))
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@ -307,6 +392,7 @@ if __name__ == "__main__":
|
|||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
compare_algs(os.path.join(args.save_dir, "compare-alg"))
|
compare_algs_v2(os.path.join(args.save_dir, "compare-alg-v2"))
|
||||||
# visualize_env(os.path.join(args.save_dir, "vis-env"))
|
# visualize_env(os.path.join(args.save_dir, "vis-env"))
|
||||||
# compare_cl(os.path.join(args.save_dir, "compare-cl"))
|
# compare_cl(os.path.join(args.save_dir, "compare-cl"))
|
||||||
|
# compare_algs(os.path.join(args.save_dir, "compare-alg"))
|
||||||
|
Loading…
Reference in New Issue
Block a user