Add SuperTransformerEncoder
This commit is contained in:
		
							
								
								
									
										71
									
								
								tests/test_super_att.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										71
									
								
								tests/test_super_att.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,71 @@ | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.03 # | ||||
| ##################################################### | ||||
| # pytest ./tests/test_super_model.py -s             # | ||||
| ##################################################### | ||||
| import sys, random | ||||
| import unittest | ||||
| from parameterized import parameterized | ||||
| import pytest | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "lib").resolve() | ||||
| print("library path: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| import torch | ||||
| from xlayers import super_core | ||||
| import spaces | ||||
|  | ||||
|  | ||||
| class TestSuperAttention(unittest.TestCase): | ||||
|     """Test the super attention layer.""" | ||||
|  | ||||
|     def _internal_func(self, inputs, model): | ||||
|         outputs = model(inputs) | ||||
|         abstract_space = model.abstract_search_space | ||||
|         print( | ||||
|             "The abstract search space for SuperAttention is:\n{:}".format( | ||||
|                 abstract_space | ||||
|             ) | ||||
|         ) | ||||
|         abstract_space.clean_last() | ||||
|         abstract_child = abstract_space.random(reuse_last=True) | ||||
|         print("The abstract child program is:\n{:}".format(abstract_child)) | ||||
|         model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|         model.apply_candidate(abstract_child) | ||||
|         outputs = model(inputs) | ||||
|         return abstract_child, outputs | ||||
|  | ||||
|     def test_super_attention(self): | ||||
|         proj_dim = spaces.Categorical(12, 24, 36) | ||||
|         num_heads = spaces.Categorical(2, 4, 6) | ||||
|         model = super_core.SuperAttention(10, proj_dim, num_heads) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|  | ||||
|         inputs = torch.rand(4, 20, 10)  # batch size, sequence length, channel | ||||
|         abstract_child, outputs = self._internal_func(inputs, model) | ||||
|         output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|  | ||||
|     @parameterized.expand([[6], [12], [24], [48]]) | ||||
|     def test_transformer_encoder(self, input_dim): | ||||
|         output_dim = spaces.Categorical(12, 24, 36) | ||||
|         model = super_core.SuperTransformerEncoderLayer( | ||||
|             input_dim, | ||||
|             output_dim=output_dim, | ||||
|             num_heads=spaces.Categorical(2, 4, 6), | ||||
|             mlp_hidden_multiplier=spaces.Categorical(1, 2, 4), | ||||
|         ) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|         inputs = torch.rand(4, 20, input_dim) | ||||
|         abstract_child, outputs = self._internal_func(inputs, model) | ||||
|         output_shape = ( | ||||
|             4, | ||||
|             20, | ||||
|             output_dim.abstract(reuse_last=True).random(reuse_last=True).value, | ||||
|         ) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
| @@ -51,10 +51,10 @@ class TestSuperLinear(unittest.TestCase): | ||||
|         outputs = model(inputs) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|  | ||||
|     def test_super_mlp(self): | ||||
|     def test_super_mlp_v1(self): | ||||
|         hidden_features = spaces.Categorical(12, 24, 36) | ||||
|         out_features = spaces.Categorical(24, 36, 48) | ||||
|         mlp = super_core.SuperMLP(10, hidden_features, out_features) | ||||
|         mlp = super_core.SuperMLPv1(10, hidden_features, out_features) | ||||
|         print(mlp) | ||||
|         mlp.apply_verbose(True) | ||||
|         self.assertTrue(mlp.fc1._out_features, mlp.fc2._in_features) | ||||
| @@ -64,7 +64,9 @@ class TestSuperLinear(unittest.TestCase): | ||||
|         self.assertEqual(tuple(outputs.shape), (4, 48)) | ||||
|  | ||||
|         abstract_space = mlp.abstract_search_space | ||||
|         print("The abstract search space for SuperMLP is:\n{:}".format(abstract_space)) | ||||
|         print( | ||||
|             "The abstract search space for SuperMLPv1 is:\n{:}".format(abstract_space) | ||||
|         ) | ||||
|         self.assertEqual( | ||||
|             abstract_space["fc1"]["_out_features"], | ||||
|             abstract_space["fc2"]["_in_features"], | ||||
| @@ -88,28 +90,28 @@ class TestSuperLinear(unittest.TestCase): | ||||
|         output_shape = (4, abstract_child["fc2"]["_out_features"].value) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|  | ||||
|     def test_super_attention(self): | ||||
|         proj_dim = spaces.Categorical(12, 24, 36) | ||||
|         num_heads = spaces.Categorical(2, 4, 6) | ||||
|         model = super_core.SuperAttention(10, proj_dim, num_heads) | ||||
|         print(model) | ||||
|         model.apply_verbose(True) | ||||
|     def test_super_mlp_v2(self): | ||||
|         hidden_multiplier = spaces.Categorical(1.0, 2.0, 3.0) | ||||
|         out_features = spaces.Categorical(24, 36, 48) | ||||
|         mlp = super_core.SuperMLPv2(10, hidden_multiplier, out_features) | ||||
|         print(mlp) | ||||
|         mlp.apply_verbose(True) | ||||
|  | ||||
|         inputs = torch.rand(4, 20, 10)  # batch size, sequence length, channel | ||||
|         outputs = model(inputs) | ||||
|         inputs = torch.rand(4, 10) | ||||
|         outputs = mlp(inputs) | ||||
|         self.assertEqual(tuple(outputs.shape), (4, 48)) | ||||
|  | ||||
|         abstract_space = model.abstract_search_space | ||||
|         abstract_space = mlp.abstract_search_space | ||||
|         print( | ||||
|             "The abstract search space for SuperAttention is:\n{:}".format( | ||||
|                 abstract_space | ||||
|             ) | ||||
|             "The abstract search space for SuperMLPv2 is:\n{:}".format(abstract_space) | ||||
|         ) | ||||
|  | ||||
|         abstract_space.clean_last() | ||||
|         abstract_child = abstract_space.random(reuse_last=True) | ||||
|         print("The abstract child program is:\n{:}".format(abstract_child)) | ||||
|  | ||||
|         model.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|         model.apply_candidate(abstract_child) | ||||
|         outputs = model(inputs) | ||||
|         output_shape = (4, 20, abstract_child["proj"]["_out_features"].value) | ||||
|         mlp.set_super_run_type(super_core.SuperRunMode.Candidate) | ||||
|         mlp.apply_candidate(abstract_child) | ||||
|         outputs = mlp(inputs) | ||||
|         output_shape = (4, abstract_child["_out_features"].value) | ||||
|         self.assertEqual(tuple(outputs.shape), output_shape) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user