update codes

This commit is contained in:
D-X-Y 2020-01-12 01:42:17 +11:00
parent 654015bf9d
commit 33384a78af
15 changed files with 288 additions and 21 deletions

View File

@ -122,6 +122,12 @@ CUDA_VISIBLE_DEVICES=0 bash ./scripts/nas-infer-train.sh cifar100 GDAS_V1 96 -1
CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1 CUDA_VISIBLE_DEVICES=0,1,2,3 bash ./scripts/nas-infer-train.sh imagenet-1k GDAS_V1 256 -1
``` ```
#### Searching on the NASNet search space
Please use the following scripts to use GDAS to search as in the original paper:
```
CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1
```
#### Searching on a small search space (NAS-Bench-102) #### Searching on a small search space (NAS-Bench-102)
The GDAS searching codes on a small search space: The GDAS searching codes on a small search space:
``` ```

View File

@ -0,0 +1,9 @@
{
"super_type" : ["str", "nasnet-super"],
"name" : ["str", "GDAS"],
"C" : ["int", "16" ],
"N" : ["int", "2" ],
"steps" : ["int", "4" ],
"multiplier" : ["int", "4" ],
"stem_multiplier" : ["int", "3" ]
}

View File

@ -0,0 +1,13 @@
{
"scheduler": ["str", "cos"],
"LR" : ["float", "0.025"],
"eta_min" : ["float", "0.001"],
"epochs" : ["int", "250"],
"warmup" : ["int", "0"],
"optim" : ["str", "SGD"],
"decay" : ["float", "0.0005"],
"momentum" : ["float", "0.9"],
"nesterov" : ["bool", "1"],
"criterion": ["str", "Softmax"],
"batch_size": ["int", "256"]
}

View File

@ -88,12 +88,17 @@ def main(xargs):
logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config)) logger.log('||||||| {:10s} ||||||| Config={:}'.format(xargs.dataset, config))
search_space = get_search_spaces('cell', xargs.search_space_name) search_space = get_search_spaces('cell', xargs.search_space_name)
model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells, if xargs.model_config is None:
'max_nodes': xargs.max_nodes, 'num_classes': class_num, model_config = dict2config({'name': 'GDAS', 'C': xargs.channel, 'N': xargs.num_cells,
'space' : search_space, 'max_nodes': xargs.max_nodes, 'num_classes': class_num,
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None) 'space' : search_space,
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
else:
model_config = load_config(xargs.model_config, {'num_classes': class_num, 'space' : search_space,
'affine' : False, 'track_running_stats': bool(xargs.track_running_stats)}, None)
search_model = get_cell_based_tiny_net(model_config) search_model = get_cell_based_tiny_net(model_config)
logger.log('search-model :\n{:}'.format(search_model)) logger.log('search-model :\n{:}'.format(search_model))
logger.log('model-config : {:}'.format(model_config))
w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config) w_optimizer, w_scheduler, criterion = get_optim_scheduler(search_model.get_weights(), config)
a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay) a_optimizer = torch.optim.Adam(search_model.get_alphas(), lr=xargs.arch_learning_rate, betas=(0.5, 0.999), weight_decay=xargs.arch_weight_decay)
@ -104,7 +109,7 @@ def main(xargs):
flop, param = get_model_infos(search_model, xshape) flop, param = get_model_infos(search_model, xshape)
#logger.log('{:}'.format(search_model)) #logger.log('{:}'.format(search_model))
logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param)) logger.log('FLOP = {:.2f} M, Params = {:.2f} MB'.format(flop, param))
logger.log('search-space : {:}'.format(search_space)) logger.log('search-space [{:} ops] : {:}'.format(len(search_space), search_space))
if xargs.arch_nas_dataset is None: if xargs.arch_nas_dataset is None:
api = None api = None
else: else:
@ -173,7 +178,7 @@ def main(xargs):
logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1)) logger.log('<<<--->>> The {:}-th epoch : find the highest validation accuracy : {:.2f}%.'.format(epoch_str, valid_a_top1))
copy_checkpoint(model_base_path, model_best_path, logger) copy_checkpoint(model_base_path, model_best_path, logger)
with torch.no_grad(): with torch.no_grad():
logger.log('arch-parameters :\n{:}'.format( nn.functional.softmax(search_model.arch_parameters, dim=-1).cpu() )) logger.log('{:}'.format(search_model.show_alphas()))
if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] ))) if api is not None: logger.log('{:}'.format(api.query_by_arch( genotypes[epoch] )))
# measure elapsed time # measure elapsed time
epoch_time.update(time.time() - start_time) epoch_time.update(time.time() - start_time)
@ -198,6 +203,7 @@ if __name__ == '__main__':
parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.') parser.add_argument('--num_cells', type=int, help='The number of cells in one stage.')
parser.add_argument('--track_running_stats',type=int, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.') parser.add_argument('--track_running_stats',type=int, choices=[0,1],help='Whether use track_running_stats or not in the BN layer.')
parser.add_argument('--config_path', type=str, help='The path of the configuration.') parser.add_argument('--config_path', type=str, help='The path of the configuration.')
parser.add_argument('--model_config', type=str, help='The path of the model configuration. When this arg is set, it will cover max_nodes / channels / num_cells.')
# architecture leraning rate # architecture leraning rate
parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding') parser.add_argument('--arch_learning_rate', type=float, default=3e-4, help='learning rate for arch encoding')
parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding') parser.add_argument('--arch_weight_decay', type=float, default=1e-3, help='weight decay for arch encoding')

View File

@ -13,20 +13,21 @@ from config_utils import dict2config
from .SharedUtils import change_key from .SharedUtils import change_key
from .cell_searchs import CellStructure, CellArchitectures from .cell_searchs import CellStructure, CellArchitectures
# Cell-based NAS Models # Cell-based NAS Models
def get_cell_based_tiny_net(config): def get_cell_based_tiny_net(config):
super_type = getattr(config, 'super_type', 'basic') super_type = getattr(config, 'super_type', 'basic')
group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM'] group_names = ['DARTS-V1', 'DARTS-V2', 'GDAS', 'SETN', 'ENAS', 'RANDOM']
if super_type == 'basic' and config.name in group_names: if super_type == 'basic' and config.name in group_names:
from .cell_searchs import nas_super_nets from .cell_searchs import nas102_super_nets as nas_super_nets
try: try:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats) return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space, config.affine, config.track_running_stats)
except: except:
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space) return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space)
elif super_type == 'l2s-base' and config.name in group_names: elif super_type == 'nasnet-super':
from .l2s_cell_searchs import nas_super_nets from .cell_searchs import nasnet_super_nets as nas_super_nets
return nas_super_nets[config.name](config.C, config.N, config.max_nodes, config.num_classes, config.space \ return nas_super_nets[config.name](config.C, config.N, config.steps, config.multiplier, \
,config.n_piece) config.stem_multiplier, config.num_classes, config.space, config.affine, config.track_running_stats)
elif config.name == 'infer.tiny': elif config.name == 'infer.tiny':
from .cell_infers import TinyNetwork from .cell_infers import TinyNetwork
return TinyNetwork(config.C, config.N, config.genotype, config.num_classes) return TinyNetwork(config.C, config.N, config.genotype, config.num_classes)

View File

@ -28,7 +28,6 @@ SearchSpaceNames = {'connect-nas' : CONNECT_NAS_BENCHMARK,
'aa-nas' : NAS_BENCH_102, 'aa-nas' : NAS_BENCH_102,
'nas-bench-102': NAS_BENCH_102, 'nas-bench-102': NAS_BENCH_102,
'darts' : DARTS_SPACE} 'darts' : DARTS_SPACE}
#'full' : sorted(list(OPS.keys()))}
class ReLUConvBN(nn.Module): class ReLUConvBN(nn.Module):

View File

@ -1,16 +1,22 @@
################################################## ##################################################
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 #
################################################## ##################################################
# The macro structure is defined in NAS-Bench-102
from .search_model_darts import TinyNetworkDarts from .search_model_darts import TinyNetworkDarts
from .search_model_gdas import TinyNetworkGDAS from .search_model_gdas import TinyNetworkGDAS
from .search_model_setn import TinyNetworkSETN from .search_model_setn import TinyNetworkSETN
from .search_model_enas import TinyNetworkENAS from .search_model_enas import TinyNetworkENAS
from .search_model_random import TinyNetworkRANDOM from .search_model_random import TinyNetworkRANDOM
from .genotypes import Structure as CellStructure, architectures as CellArchitectures from .genotypes import Structure as CellStructure, architectures as CellArchitectures
# NASNet-based macro structure
from .search_model_gdas_nasnet import NASNetworkGDAS
nas_super_nets = {'DARTS-V1': TinyNetworkDarts,
nas102_super_nets = {'DARTS-V1': TinyNetworkDarts,
'DARTS-V2': TinyNetworkDarts, 'DARTS-V2': TinyNetworkDarts,
'GDAS' : TinyNetworkGDAS, 'GDAS' : TinyNetworkGDAS,
'SETN' : TinyNetworkSETN, 'SETN' : TinyNetworkSETN,
'ENAS' : TinyNetworkENAS, 'ENAS' : TinyNetworkENAS,
'RANDOM' : TinyNetworkRANDOM} 'RANDOM' : TinyNetworkRANDOM}
nasnet_super_nets = {'GDAS' : NASNetworkGDAS}

View File

@ -9,10 +9,11 @@ from copy import deepcopy
from ..cell_operations import OPS from ..cell_operations import OPS
class SearchCell(nn.Module): # This module is used for NAS-Bench-102, represents a small search space with a complete DAG
class NAS102SearchCell(nn.Module):
def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True): def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False, track_running_stats=True):
super(SearchCell, self).__init__() super(NAS102SearchCell, self).__init__()
self.op_names = deepcopy(op_names) self.op_names = deepcopy(op_names)
self.edges = nn.ModuleDict() self.edges = nn.ModuleDict()
@ -74,7 +75,7 @@ class SearchCell(nn.Module):
nodes.append( sum(inter_nodes) ) nodes.append( sum(inter_nodes) )
return nodes[-1] return nodes[-1]
# uniform random sampling per iteration # uniform random sampling per iteration, SETN
def forward_urs(self, inputs): def forward_urs(self, inputs):
nodes = [inputs] nodes = [inputs]
for i in range(1, self.max_nodes): for i in range(1, self.max_nodes):
@ -118,3 +119,61 @@ class SearchCell(nn.Module):
inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) ) inter_nodes.append( self.edges[node_str][op_index]( nodes[j] ) )
nodes.append( sum(inter_nodes) ) nodes.append( sum(inter_nodes) )
return nodes[-1] return nodes[-1]
class MixedOp(nn.Module):
def __init__(self, space, C, stride, affine, track_running_stats):
super(MixedOp, self).__init__()
self._ops = nn.ModuleList()
for primitive in space:
op = OPS[primitive](C, C, stride, affine, track_running_stats)
self._ops.append(op)
def forward(self, x, weights, index):
#return sum(w * op(x) for w, op in zip(weights, self._ops))
return self._ops[index](x) * weights[index]
# Learning Transferable Architectures for Scalable Image Recognition, CVPR 2018
class NASNetSearchCell(nn.Module):
def __init__(self, space, steps, multiplier, C_prev_prev, C_prev, C, reduction, reduction_prev, affine, track_running_stats):
super(NASNetSearchCell, self).__init__()
self.reduction = reduction
self.op_names = deepcopy(space)
if reduction_prev: self.preprocess0 = OPS['skip_connect'](C_prev_prev, C, 2, affine, track_running_stats)
else : self.preprocess0 = OPS['nor_conv_1x1'](C_prev_prev, C, 1, affine, track_running_stats)
self.preprocess1 = OPS['nor_conv_1x1'](C_prev, C, 1, affine, track_running_stats)
self._steps = steps
self._multiplier = multiplier
self._ops = nn.ModuleList()
self.edges = nn.ModuleDict()
for i in range(self._steps):
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
stride = 2 if reduction and j < 2 else 1
op = MixedOp(space, C, stride, affine, track_running_stats)
self.edges[ node_str ] = op
self.edge_keys = sorted(list(self.edges.keys()))
self.edge2index = {key:i for i, key in enumerate(self.edge_keys)}
self.num_edges = len(self.edges)
def forward_gdas(self, s0, s1, weightss, indexs):
s0 = self.preprocess0(s0)
s1 = self.preprocess1(s1)
states = [s0, s1]
for i in range(self._steps):
clist = []
for j, h in enumerate(states):
node_str = '{:}<-{:}'.format(i, j)
op = self.edges[ node_str ]
weights = weightss[ self.edge2index[node_str] ]
index = indexs[ self.edge2index[node_str] ].item()
clist.append( op(h, weights, index) )
states.append( sum(clist) )
return torch.cat(states[-self._multiplier:], dim=1)

View File

@ -7,7 +7,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from copy import deepcopy from copy import deepcopy
from ..cell_operations import ResNetBasicblock from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell from .search_cells import NAS102SearchCell as SearchCell
from .genotypes import Structure from .genotypes import Structure

View File

@ -7,7 +7,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from copy import deepcopy from copy import deepcopy
from ..cell_operations import ResNetBasicblock from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell from .search_cells import NAS102SearchCell as SearchCell
from .genotypes import Structure from .genotypes import Structure
from .search_model_enas_utils import Controller from .search_model_enas_utils import Controller

View File

@ -5,7 +5,7 @@ import torch
import torch.nn as nn import torch.nn as nn
from copy import deepcopy from copy import deepcopy
from ..cell_operations import ResNetBasicblock from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell from .search_cells import NAS102SearchCell as SearchCell
from .genotypes import Structure from .genotypes import Structure
@ -59,6 +59,10 @@ class TinyNetworkGDAS(nn.Module):
def get_alphas(self): def get_alphas(self):
return [self.arch_parameters] return [self.arch_parameters]
def show_alphas(self):
with torch.no_grad():
return 'arch-parameters :\n{:}'.format( nn.functional.softmax(self.arch_parameters, dim=-1).cpu() )
def get_message(self): def get_message(self):
string = self.extra_repr() string = self.extra_repr()
for i, cell in enumerate(self.cells): for i, cell in enumerate(self.cells):

View File

@ -0,0 +1,126 @@
###########################################################################
# Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 #
###########################################################################
import torch
import torch.nn as nn
from copy import deepcopy
from .search_cells import NASNetSearchCell as SearchCell
from .genotypes import Structure
# The macro structure is based on NASNet
class NASNetworkGDAS(nn.Module):
def __init__(self, C, N, steps, multiplier, stem_multiplier, num_classes, search_space, affine, track_running_stats):
super(NASNetworkGDAS, self).__init__()
self._C = C
self._layerN = N
self._steps = steps
self._multiplier = multiplier
self.stem = nn.Sequential(
nn.Conv2d(3, C*stem_multiplier, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(C*stem_multiplier))
# config for each layer
layer_channels = [C ] * N + [C*2 ] + [C*2 ] * (N-1) + [C*4 ] + [C*4 ] * (N-1)
layer_reductions = [False] * N + [True] + [False] * (N-1) + [True] + [False] * (N-1)
num_edge, edge2index = None, None
C_prev_prev, C_prev, C_curr, reduction_prev = C*stem_multiplier, C*stem_multiplier, C, False
self.cells = nn.ModuleList()
for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)):
cell = SearchCell(search_space, steps, multiplier, C_prev_prev, C_prev, C_curr, reduction, reduction_prev, affine, track_running_stats)
if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index
else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges)
self.cells.append( cell )
C_prev_prev, C_prev, reduction_prev = C_prev, multiplier*C_curr, reduction
self.op_names = deepcopy( search_space )
self._Layer = len(self.cells)
self.edge2index = edge2index
self.lastact = nn.Sequential(nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True))
self.global_pooling = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Linear(C_prev, num_classes)
self.arch_normal_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.arch_reduce_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) )
self.tau = 10
def get_weights(self):
xlist = list( self.stem.parameters() ) + list( self.cells.parameters() )
xlist+= list( self.lastact.parameters() ) + list( self.global_pooling.parameters() )
xlist+= list( self.classifier.parameters() )
return xlist
def set_tau(self, tau):
self.tau = tau
def get_tau(self):
return self.tau
def get_alphas(self):
return [self.arch_normal_parameters, self.arch_reduce_parameters]
def show_alphas(self):
with torch.no_grad():
A = 'arch-normal-parameters :\n{:}'.format( nn.functional.softmax(self.arch_normal_parameters, dim=-1).cpu() )
B = 'arch-reduce-parameters :\n{:}'.format( nn.functional.softmax(self.arch_reduce_parameters, dim=-1).cpu() )
return '{:}\n{:}'.format(A, B)
def get_message(self):
string = self.extra_repr()
for i, cell in enumerate(self.cells):
string += '\n {:02d}/{:02d} :: {:}'.format(i, len(self.cells), cell.extra_repr())
return string
def extra_repr(self):
return ('{name}(C={_C}, N={_layerN}, steps={_steps}, multiplier={_multiplier}, L={_Layer})'.format(name=self.__class__.__name__, **self.__dict__))
def genotype(self):
def _parse(weights):
gene = []
for i in range(self._steps):
edges = []
for j in range(2+i):
node_str = '{:}<-{:}'.format(i, j)
ws = weights[ self.edge2index[node_str] ]
for k, op_name in enumerate(self.op_names):
if op_name == 'none': continue
edges.append( (op_name, j, ws[k]) )
edges = sorted(edges, key=lambda x: -x[-1])
selected_edges = edges[:2]
gene.append( tuple(selected_edges) )
return gene
with torch.no_grad():
gene_normal = _parse(torch.softmax(self.arch_normal_parameters, dim=-1).cpu().numpy())
gene_reduce = _parse(torch.softmax(self.arch_reduce_parameters, dim=-1).cpu().numpy())
return {'normal': gene_normal, 'normal_concat': list(range(2+self._steps-self._multiplier, self._steps+2)),
'reduce': gene_reduce, 'reduce_concat': list(range(2+self._steps-self._multiplier, self._steps+2))}
def forward(self, inputs):
def get_gumbel_prob(xins):
while True:
gumbels = -torch.empty_like(xins).exponential_().log()
logits = (xins.log_softmax(dim=1) + gumbels) / self.tau
probs = nn.functional.softmax(logits, dim=1)
index = probs.max(-1, keepdim=True)[1]
one_h = torch.zeros_like(logits).scatter_(-1, index, 1.0)
hardwts = one_h - probs.detach() + probs
if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
continue
else: break
return hardwts, index
normal_hardwts, normal_index = get_gumbel_prob(self.arch_normal_parameters)
reduce_hardwts, reduce_index = get_gumbel_prob(self.arch_reduce_parameters)
s0 = s1 = self.stem(inputs)
for i, cell in enumerate(self.cells):
if cell.reduction: hardwts, index = reduce_hardwts, reduce_index
else : hardwts, index = normal_hardwts, normal_index
s0, s1 = s1, cell.forward_gdas(s0, s1, hardwts, index)
out = self.lastact(s1)
out = self.global_pooling( out )
out = out.view(out.size(0), -1)
logits = self.classifier(out)
return out, logits

View File

@ -7,7 +7,7 @@ import torch, random
import torch.nn as nn import torch.nn as nn
from copy import deepcopy from copy import deepcopy
from ..cell_operations import ResNetBasicblock from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell from .search_cells import NAS102SearchCell as SearchCell
from .genotypes import Structure from .genotypes import Structure

View File

@ -7,7 +7,7 @@ import torch, random
import torch.nn as nn import torch.nn as nn
from copy import deepcopy from copy import deepcopy
from ..cell_operations import ResNetBasicblock from ..cell_operations import ResNetBasicblock
from .search_cells import SearchCell from .search_cells import NAS102SearchCell as SearchCell
from .genotypes import Structure from .genotypes import Structure

View File

@ -0,0 +1,38 @@
#!/bin/bash
# bash ./scripts-search/GDAS-search-NASNet-space.sh cifar10 1 -1
echo script name: $0
echo $# arguments
if [ "$#" -ne 3 ] ;then
echo "Input illegal number of parameters " $#
echo "Need 3 parameters for dataset, track_running_stats, and seed"
exit 1
fi
if [ "$TORCH_HOME" = "" ]; then
echo "Must set TORCH_HOME envoriment variable for data dir saving"
exit 1
else
echo "TORCH_HOME : $TORCH_HOME"
fi
dataset=$1
track_running_stats=$2
seed=$3
space=darts
if [ "$dataset" == "cifar10" ] || [ "$dataset" == "cifar100" ]; then
data_path="$TORCH_HOME/cifar.python"
else
data_path="$TORCH_HOME/cifar.python/ImageNet16"
fi
save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${track_running_stats}
OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \
--save_dir ${save_dir} \
--dataset ${dataset} --data_path ${data_path} \
--search_space_name ${space} \
--config_path configs/search-opts/GDAS-NASNet-CIFAR.config \
--model_config configs/search-archs/GDAS-NASNet-CIFAR.config \
--tau_max 10 --tau_min 0.1 --track_running_stats ${track_running_stats} \
--arch_learning_rate 0.0003 --arch_weight_decay 0.001 \
--workers 4 --print_freq 200 --rand_seed ${seed}