Update baselines
This commit is contained in:
parent
0070e54869
commit
33ea7ca87a
228
exps/GeMOSA/baselines/slbm-ft.py
Normal file
228
exps/GeMOSA/baselines/slbm-ft.py
Normal file
@ -0,0 +1,228 @@
|
|||||||
|
#####################################################
|
||||||
|
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2021.04 #
|
||||||
|
#####################################################
|
||||||
|
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v1 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||||
|
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v2 --hidden_dim 16 --epochs 500 --init_lr 0.1 --device cuda
|
||||||
|
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v3 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||||
|
# python exps/GeMOSA/baselines/slbm-ft.py --env_version v4 --hidden_dim 32 --epochs 1000 --init_lr 0.05 --device cuda
|
||||||
|
#####################################################
|
||||||
|
import sys, time, copy, torch, random, argparse
|
||||||
|
from tqdm import tqdm
|
||||||
|
from copy import deepcopy
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
lib_dir = (Path(__file__).parent / ".." / ".." / "..").resolve()
|
||||||
|
print("LIB-DIR: {:}".format(lib_dir))
|
||||||
|
if str(lib_dir) not in sys.path:
|
||||||
|
sys.path.insert(0, str(lib_dir))
|
||||||
|
|
||||||
|
|
||||||
|
from xautodl.procedures import (
|
||||||
|
prepare_seed,
|
||||||
|
prepare_logger,
|
||||||
|
save_checkpoint,
|
||||||
|
copy_checkpoint,
|
||||||
|
)
|
||||||
|
from xautodl.log_utils import time_string
|
||||||
|
from xautodl.log_utils import AverageMeter, convert_secs2time
|
||||||
|
|
||||||
|
from xautodl.procedures.metric_utils import (
|
||||||
|
SaveMetric,
|
||||||
|
MSEMetric,
|
||||||
|
Top1AccMetric,
|
||||||
|
ComposeMetric,
|
||||||
|
)
|
||||||
|
from xautodl.datasets.synthetic_core import get_synthetic_env
|
||||||
|
from xautodl.models.xcore import get_model
|
||||||
|
from xautodl.utils import show_mean_var
|
||||||
|
|
||||||
|
|
||||||
|
def subsample(historical_x, historical_y, maxn=10000):
|
||||||
|
total = historical_x.size(0)
|
||||||
|
if total <= maxn:
|
||||||
|
return historical_x, historical_y
|
||||||
|
else:
|
||||||
|
indexes = torch.randint(low=0, high=total, size=[maxn])
|
||||||
|
return historical_x[indexes], historical_y[indexes]
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
prepare_seed(args.rand_seed)
|
||||||
|
logger = prepare_logger(args)
|
||||||
|
env = get_synthetic_env(mode="test", version=args.env_version)
|
||||||
|
model_kwargs = dict(
|
||||||
|
config=dict(model_type="norm_mlp"),
|
||||||
|
input_dim=env.meta_info["input_dim"],
|
||||||
|
output_dim=env.meta_info["output_dim"],
|
||||||
|
hidden_dims=[args.hidden_dim] * 2,
|
||||||
|
act_cls="relu",
|
||||||
|
norm_cls="layer_norm_1d",
|
||||||
|
)
|
||||||
|
logger.log("The total enviornment: {:}".format(env))
|
||||||
|
w_containers = dict()
|
||||||
|
|
||||||
|
if env.meta_info["task"] == "regression":
|
||||||
|
criterion = torch.nn.MSELoss()
|
||||||
|
metric_cls = MSEMetric
|
||||||
|
elif env.meta_info["task"] == "classification":
|
||||||
|
criterion = torch.nn.CrossEntropyLoss()
|
||||||
|
metric_cls = Top1AccMetric
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||||
|
)
|
||||||
|
|
||||||
|
def finetune(index):
|
||||||
|
seq_times = env.get_seq_times(index, args.seq_length)
|
||||||
|
_, (allxs, allys) = env.seq_call(seq_times)
|
||||||
|
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||||
|
if env.meta_info["task"] == "classification":
|
||||||
|
allys = allys.view(-1)
|
||||||
|
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||||
|
model = get_model(**model_kwargs)
|
||||||
|
model = model.to(args.device)
|
||||||
|
|
||||||
|
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||||
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||||
|
optimizer,
|
||||||
|
milestones=[
|
||||||
|
int(args.epochs * 0.25),
|
||||||
|
int(args.epochs * 0.5),
|
||||||
|
int(args.epochs * 0.75),
|
||||||
|
],
|
||||||
|
gamma=0.3,
|
||||||
|
)
|
||||||
|
|
||||||
|
train_metric = metric_cls(True)
|
||||||
|
best_loss, best_param = None, None
|
||||||
|
for _iepoch in range(args.epochs):
|
||||||
|
preds = model(historical_x)
|
||||||
|
optimizer.zero_grad()
|
||||||
|
loss = criterion(preds, historical_y)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
lr_scheduler.step()
|
||||||
|
# save best
|
||||||
|
if best_loss is None or best_loss > loss.item():
|
||||||
|
best_loss = loss.item()
|
||||||
|
best_param = copy.deepcopy(model.state_dict())
|
||||||
|
model.load_state_dict(best_param)
|
||||||
|
# model.analyze_weights()
|
||||||
|
with torch.no_grad():
|
||||||
|
train_metric(preds, historical_y)
|
||||||
|
train_results = train_metric.get_info()
|
||||||
|
return train_results, model
|
||||||
|
|
||||||
|
metric = metric_cls(True)
|
||||||
|
per_timestamp_time, start_time = AverageMeter(), time.time()
|
||||||
|
for idx, (future_time, (future_x, future_y)) in enumerate(env):
|
||||||
|
|
||||||
|
need_time = "Time Left: {:}".format(
|
||||||
|
convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True)
|
||||||
|
)
|
||||||
|
logger.log(
|
||||||
|
"[{:}]".format(time_string())
|
||||||
|
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||||
|
+ " "
|
||||||
|
+ need_time
|
||||||
|
)
|
||||||
|
# train the same data
|
||||||
|
train_results, model = finetune(idx)
|
||||||
|
|
||||||
|
# build optimizer
|
||||||
|
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
||||||
|
future_x.to(args.device), future_y.to(args.device)
|
||||||
|
future_y_hat = model(future_x)
|
||||||
|
future_loss = criterion(future_y_hat, future_y)
|
||||||
|
metric(future_y_hat, future_y)
|
||||||
|
log_str = (
|
||||||
|
"[{:}]".format(time_string())
|
||||||
|
+ " [{:04d}/{:04d}]".format(idx, len(env))
|
||||||
|
+ " train-score: {:.5f}, eval-score: {:.5f}".format(
|
||||||
|
train_results["score"], metric.get_info()["score"]
|
||||||
|
)
|
||||||
|
)
|
||||||
|
logger.log(log_str)
|
||||||
|
logger.log("")
|
||||||
|
per_timestamp_time.update(time.time() - start_time)
|
||||||
|
start_time = time.time()
|
||||||
|
|
||||||
|
save_checkpoint(
|
||||||
|
{"w_containers": w_containers},
|
||||||
|
logger.path(None) / "final-ckp.pth",
|
||||||
|
logger,
|
||||||
|
)
|
||||||
|
|
||||||
|
logger.log("-" * 200 + "\n")
|
||||||
|
logger.close()
|
||||||
|
return metric.get_info()["score"]
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser("Use the data in the past.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--save_dir",
|
||||||
|
type=str,
|
||||||
|
default="./outputs/GeMOSA-synthetic/use-same-ft-timestamp",
|
||||||
|
help="The checkpoint directory.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--env_version",
|
||||||
|
type=str,
|
||||||
|
required=True,
|
||||||
|
help="The synthetic enviornment version.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--hidden_dim",
|
||||||
|
type=int,
|
||||||
|
required=True,
|
||||||
|
help="The hidden dimension.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--init_lr",
|
||||||
|
type=float,
|
||||||
|
default=0.1,
|
||||||
|
help="The initial learning rate for the optimizer (default is Adam)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seq_length", type=int, default=20, help="The sequence length."
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--batch_size",
|
||||||
|
type=int,
|
||||||
|
default=512,
|
||||||
|
help="The batch size",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--epochs",
|
||||||
|
type=int,
|
||||||
|
default=300,
|
||||||
|
help="The total number of epochs.",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--device",
|
||||||
|
type=str,
|
||||||
|
default="cpu",
|
||||||
|
help="",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--workers",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="The number of data loading workers (default: 4)",
|
||||||
|
)
|
||||||
|
# Random Seed
|
||||||
|
parser.add_argument("--rand_seed", type=int, default=-1, help="manual seed")
|
||||||
|
args = parser.parse_args()
|
||||||
|
args.save_dir = "{:}-d{:}_e{:}_lr{:}-env{:}".format(
|
||||||
|
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||||
|
)
|
||||||
|
if args.rand_seed is None or args.rand_seed < 0:
|
||||||
|
results = []
|
||||||
|
for iseed in range(3):
|
||||||
|
args.rand_seed = random.randint(1, 100000)
|
||||||
|
result = main(args)
|
||||||
|
results.append(result)
|
||||||
|
show_mean_var(results)
|
||||||
|
else:
|
||||||
|
main(args)
|
@ -72,10 +72,11 @@ def main(args):
|
|||||||
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
"This task ({:}) is not supported.".format(all_env.meta_info["task"])
|
||||||
)
|
)
|
||||||
|
|
||||||
seq_length = 10
|
seq_times = env.get_seq_times(0, args.seq_length)
|
||||||
seq_times = env.get_seq_times(0, seq_length)
|
|
||||||
_, (allxs, allys) = env.seq_call(seq_times)
|
_, (allxs, allys) = env.seq_call(seq_times)
|
||||||
allxs, allys = allxs.view(-1, 1), allys.view(-1, 1)
|
allxs, allys = allxs.view(-1, allxs.shape[-1]), allys.view(-1, 1)
|
||||||
|
if env.meta_info["task"] == "classification":
|
||||||
|
allys = allys.view(-1)
|
||||||
|
|
||||||
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
historical_x, historical_y = allxs.to(args.device), allys.to(args.device)
|
||||||
model = get_model(**model_kwargs)
|
model = get_model(**model_kwargs)
|
||||||
@ -83,28 +84,28 @@ def main(args):
|
|||||||
|
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True)
|
||||||
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
||||||
optimizer,
|
optimizer,
|
||||||
milestones=[
|
milestones=[
|
||||||
int(args.epochs * 0.25),
|
int(args.epochs * 0.25),
|
||||||
int(args.epochs * 0.5),
|
int(args.epochs * 0.5),
|
||||||
int(args.epochs * 0.75),
|
int(args.epochs * 0.75),
|
||||||
],
|
],
|
||||||
gamma=0.3,
|
gamma=0.3,
|
||||||
)
|
)
|
||||||
|
|
||||||
train_metric = metric_cls(True)
|
train_metric = metric_cls(True)
|
||||||
best_loss, best_param = None, None
|
best_loss, best_param = None, None
|
||||||
for _iepoch in range(args.epochs):
|
for _iepoch in range(args.epochs):
|
||||||
preds = model(historical_x)
|
preds = model(historical_x)
|
||||||
optimizer.zero_grad()
|
optimizer.zero_grad()
|
||||||
loss = criterion(preds, historical_y)
|
loss = criterion(preds, historical_y)
|
||||||
loss.backward()
|
loss.backward()
|
||||||
optimizer.step()
|
optimizer.step()
|
||||||
lr_scheduler.step()
|
lr_scheduler.step()
|
||||||
# save best
|
# save best
|
||||||
if best_loss is None or best_loss > loss.item():
|
if best_loss is None or best_loss > loss.item():
|
||||||
best_loss = loss.item()
|
best_loss = loss.item()
|
||||||
best_param = copy.deepcopy(model.state_dict())
|
best_param = copy.deepcopy(model.state_dict())
|
||||||
model.load_state_dict(best_param)
|
model.load_state_dict(best_param)
|
||||||
model.analyze_weights()
|
model.analyze_weights()
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
@ -126,7 +127,7 @@ def main(args):
|
|||||||
+ need_time
|
+ need_time
|
||||||
)
|
)
|
||||||
# train the same data
|
# train the same data
|
||||||
|
|
||||||
# build optimizer
|
# build optimizer
|
||||||
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
xmetric = ComposeMetric(metric_cls(True), SaveMetric())
|
||||||
future_x.to(args.device), future_y.to(args.device)
|
future_x.to(args.device), future_y.to(args.device)
|
||||||
@ -176,6 +177,9 @@ if __name__ == "__main__":
|
|||||||
required=True,
|
required=True,
|
||||||
help="The hidden dimension.",
|
help="The hidden dimension.",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seq_length", type=int, default=10, help="The sequence length."
|
||||||
|
)
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--init_lr",
|
"--init_lr",
|
||||||
type=float,
|
type=float,
|
||||||
@ -213,12 +217,11 @@ if __name__ == "__main__":
|
|||||||
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
args.save_dir, args.hidden_dim, args.epochs, args.init_lr, args.env_version
|
||||||
)
|
)
|
||||||
if args.rand_seed is None or args.rand_seed < 0:
|
if args.rand_seed is None or args.rand_seed < 0:
|
||||||
args.rand_seed = random.randint(1, 100000)
|
|
||||||
main(args)
|
|
||||||
else:
|
|
||||||
results = []
|
results = []
|
||||||
for iseed in range(3):
|
for iseed in range(3):
|
||||||
args.rand_seed = random.randint(1, 100000)
|
args.rand_seed = random.randint(1, 100000)
|
||||||
result = main(args)
|
result = main(args)
|
||||||
results.append(result)
|
results.append(result)
|
||||||
show_mean_var(result)
|
show_mean_var(results)
|
||||||
|
else:
|
||||||
|
main(args)
|
||||||
|
@ -88,7 +88,7 @@ class SyntheticDEnv(data.Dataset):
|
|||||||
index, timestamp = self._time_generator[index]
|
index, timestamp = self._time_generator[index]
|
||||||
xtimes = []
|
xtimes = []
|
||||||
for i in range(1, seq_length + 1):
|
for i in range(1, seq_length + 1):
|
||||||
xtimes.append(timestamp - i * self.time_interval)
|
xtimes.append(timestamp - i * self.time_interval)
|
||||||
xtimes.reverse()
|
xtimes.reverse()
|
||||||
return xtimes
|
return xtimes
|
||||||
|
|
||||||
|
@ -27,8 +27,8 @@ def split_str2indexes(string: str, max_check: int, length_limit=5):
|
|||||||
def show_mean_var(xlist):
|
def show_mean_var(xlist):
|
||||||
values = np.array(xlist)
|
values = np.array(xlist)
|
||||||
print(
|
print(
|
||||||
"{:.3f}".format(values.mean())
|
"{:.2f}".format(values.mean())
|
||||||
+ "$_{{\pm}{"
|
+ "$_{{\pm}{"
|
||||||
+ "{:.3f}".format(values.std())
|
+ "{:.2f}".format(values.std())
|
||||||
+ "}}$"
|
+ "}}$"
|
||||||
)
|
)
|
||||||
|
Loading…
Reference in New Issue
Block a user