re-organize NATS-Bench
This commit is contained in:
		
							
								
								
									
										246
									
								
								exps/NATS-Bench/main-sss.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										246
									
								
								exps/NATS-Bench/main-sss.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,246 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, argparse | ||||
| from typing import List, Text, Dict, Any | ||||
| from PIL     import ImageFile | ||||
| ImageFile.LOAD_TRUNCATED_IMAGES = True | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from procedures   import bench_evaluate_for_seed | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def evaluate_all_datasets(channels: Text, datasets: List[Text], xpaths: List[Text], | ||||
|                           splits: List[Text], config_path: Text, seed: int, workers: int, logger): | ||||
|   machine_info = get_machine_info() | ||||
|   all_infos = {'info': machine_info} | ||||
|   all_dataset_keys = [] | ||||
|   # look all the dataset | ||||
|   for dataset, xpath, split in zip(datasets, xpaths, splits): | ||||
|     # the train and valid data | ||||
|     train_data, valid_data, xshape, class_num = get_datasets(dataset, xpath, -1) | ||||
|     # load the configuration | ||||
|     if dataset == 'cifar10' or dataset == 'cifar100': | ||||
|       split_info  = load_config('configs/nas-benchmark/cifar-split.txt', None, None) | ||||
|     elif dataset.startswith('ImageNet16'): | ||||
|       split_info  = load_config('configs/nas-benchmark/{:}-split.txt'.format(dataset), None, None) | ||||
|     else: | ||||
|       raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|     config = load_config(config_path, dict(class_num=class_num, xshape=xshape), logger) | ||||
|     # check whether use the splitted validation set | ||||
|     if bool(split): | ||||
|       assert dataset == 'cifar10' | ||||
|       ValLoaders = {'ori-test': torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True)} | ||||
|       assert len(train_data) == len(split_info.train) + len(split_info.valid), 'invalid length : {:} vs {:} + {:}'.format(len(train_data), len(split_info.train), len(split_info.valid)) | ||||
|       train_data_v2 = deepcopy(train_data) | ||||
|       train_data_v2.transform = valid_data.transform | ||||
|       valid_data = train_data_v2 | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.train), num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(split_info.valid), num_workers=workers, pin_memory=True) | ||||
|       ValLoaders['x-valid'] = valid_loader | ||||
|     else: | ||||
|       # data loader | ||||
|       train_loader = torch.utils.data.DataLoader(train_data, batch_size=config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) | ||||
|       valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) | ||||
|       if dataset == 'cifar10': | ||||
|         ValLoaders = {'ori-test': valid_loader} | ||||
|       elif dataset == 'cifar100': | ||||
|         cifar100_splits = load_config('configs/nas-benchmark/cifar100-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       elif dataset == 'ImageNet16-120': | ||||
|         imagenet16_splits = load_config('configs/nas-benchmark/imagenet-16-120-test-split.txt', None, None) | ||||
|         ValLoaders = {'ori-test': valid_loader, | ||||
|                       'x-valid' : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xvalid), num_workers=workers, pin_memory=True), | ||||
|                       'x-test'  : torch.utils.data.DataLoader(valid_data, batch_size=config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet16_splits.xtest ), num_workers=workers, pin_memory=True) | ||||
|                      } | ||||
|       else: | ||||
|         raise ValueError('invalid dataset : {:}'.format(dataset)) | ||||
|  | ||||
|     dataset_key = '{:}'.format(dataset) | ||||
|     if bool(split): dataset_key = dataset_key + '-valid' | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Train-Num={:}, Valid-Num={:}, Train-Loader-Num={:}, Valid-Loader-Num={:}, batch size={:}'.format(dataset_key, len(train_data), len(valid_data), len(train_loader), len(valid_loader), config.batch_size)) | ||||
|     logger.log('Evaluate ||||||| {:10s} ||||||| Config={:}'.format(dataset_key, config)) | ||||
|     for key, value in ValLoaders.items(): | ||||
|       logger.log('Evaluate ---->>>> {:10s} with {:} batchs'.format(key, len(value))) | ||||
|     # arch-index= 9930, arch=|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2| | ||||
|     # this genotype is the architecture with the highest accuracy on CIFAR-100 validation set | ||||
|     genotype = '|nor_conv_3x3~0|+|nor_conv_3x3~0|nor_conv_3x3~1|+|skip_connect~0|nor_conv_3x3~1|nor_conv_3x3~2|' | ||||
|     arch_config = dict2config(dict(name='infer.shape.tiny', channels=channels, genotype=genotype, num_classes=class_num), None) | ||||
|     results = bench_evaluate_for_seed(arch_config, config, train_loader, ValLoaders, seed, logger) | ||||
|     all_infos[dataset_key] = results | ||||
|     all_dataset_keys.append( dataset_key ) | ||||
|   all_infos['all_dataset_keys'] = all_dataset_keys | ||||
|   return all_infos | ||||
|  | ||||
|  | ||||
| def main(save_dir: Path, workers: int, datasets: List[Text], xpaths: List[Text], | ||||
|          splits: List[int], seeds: List[int], nets: List[str], opt_config: Dict[Text, Any], | ||||
|          to_evaluate_indexes: tuple, cover_mode: bool): | ||||
|  | ||||
|   log_dir = save_dir / 'logs' | ||||
|   log_dir.mkdir(parents=True, exist_ok=True) | ||||
|   logger = Logger(str(log_dir), os.getpid(), False) | ||||
|  | ||||
|   logger.log('xargs : seeds      = {:}'.format(seeds)) | ||||
|   logger.log('xargs : cover_mode = {:}'.format(cover_mode)) | ||||
|   logger.log('-' * 100) | ||||
|  | ||||
|   logger.log( | ||||
|     'Start evaluating range =: {:06d} - {:06d}'.format(min(to_evaluate_indexes), max(to_evaluate_indexes)) | ||||
|    +'({:} in total) / {:06d} with cover-mode={:}'.format(len(to_evaluate_indexes), len(nets), cover_mode)) | ||||
|   for i, (dataset, xpath, split) in enumerate(zip(datasets, xpaths, splits)): | ||||
|     logger.log( | ||||
|       '--->>> Evaluate {:}/{:} : dataset={:9s}, path={:}, split={:}'.format(i, len(datasets), dataset, xpath, split)) | ||||
|   logger.log('--->>> optimization config : {:}'.format(opt_config)) | ||||
|   #to_evaluate_indexes = list(range(srange[0], srange[1] + 1)) | ||||
|  | ||||
|   start_time, epoch_time = time.time(), AverageMeter() | ||||
|   for i, index in enumerate(to_evaluate_indexes): | ||||
|     channelstr = nets[index] | ||||
|     logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}] {:}'.format(time_string(), i, | ||||
|                        len(to_evaluate_indexes), index, len(nets), seeds, '-' * 15)) | ||||
|     logger.log('{:} {:} {:}'.format('-' * 15, channelstr, '-' * 15)) | ||||
|  | ||||
|     # test this arch on different datasets with different seeds | ||||
|     has_continue = False | ||||
|     for seed in seeds: | ||||
|       to_save_name = save_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|       if to_save_name.exists(): | ||||
|         if cover_mode: | ||||
|           logger.log('Find existing file : {:}, remove it before evaluation'.format(to_save_name)) | ||||
|           os.remove(str(to_save_name)) | ||||
|         else: | ||||
|           logger.log('Find existing file : {:}, skip this evaluation'.format(to_save_name)) | ||||
|           has_continue = True | ||||
|           continue | ||||
|       results = evaluate_all_datasets(channelstr, datasets, xpaths, splits, opt_config, seed, workers, logger) | ||||
|       torch.save(results, to_save_name) | ||||
|       logger.log('\n{:} evaluate {:06d}/{:06d} ({:06d}/{:06d})-th arch [seeds={:}]  ===>>> {:}'.format(time_string(), i, | ||||
|                     len(to_evaluate_indexes), index, len(nets), seeds, to_save_name)) | ||||
|     # measure elapsed time | ||||
|     if not has_continue: epoch_time.update(time.time() - start_time) | ||||
|     start_time = time.time() | ||||
|     need_time = 'Time Left: {:}'.format(convert_secs2time(epoch_time.avg * (len(to_evaluate_indexes) - i - 1), True)) | ||||
|     logger.log('This arch costs : {:}'.format(convert_secs2time(epoch_time.val, True))) | ||||
|     logger.log('{:}'.format('*' * 100)) | ||||
|     logger.log('{:}   {:74s}   {:}'.format('*' * 10, '{:06d}/{:06d} ({:06d}/{:06d})-th done, left {:}'.format(i, len( | ||||
|       to_evaluate_indexes), index, len(nets), need_time), '*' * 10)) | ||||
|     logger.log('{:}'.format('*' * 100)) | ||||
|  | ||||
|   logger.close() | ||||
|  | ||||
|  | ||||
| def traverse_net(candidates: List[int], N: int): | ||||
|   nets = [''] | ||||
|   for i in range(N): | ||||
|     new_nets = [] | ||||
|     for net in nets: | ||||
|       for C in candidates: | ||||
|         new_nets.append(str(C) if net == '' else "{:}:{:}".format(net,C)) | ||||
|     nets = new_nets | ||||
|   return nets | ||||
|  | ||||
|  | ||||
| def filter_indexes(xlist, mode, save_dir, seeds): | ||||
|   all_indexes = [] | ||||
|   for index in xlist: | ||||
|     if mode == 'cover': | ||||
|       all_indexes.append(index) | ||||
|     else: | ||||
|       for seed in seeds: | ||||
|         temp_path = save_dir / 'arch-{:06d}-seed-{:04d}.pth'.format(index, seed) | ||||
|         if not temp_path.exists(): | ||||
|           all_indexes.append(index) | ||||
|           break | ||||
|   print('{:} [FILTER-INDEXES] : there are {:}/{:} architectures in total'.format(time_string(), len(all_indexes), len(xlist))) | ||||
|  | ||||
|   SLURM_PROCID, SLURM_NTASKS = 'SLURM_PROCID', 'SLURM_NTASKS' | ||||
|   if SLURM_PROCID in os.environ and  SLURM_NTASKS in os.environ:  # run on the slurm | ||||
|     proc_id, ntasks = int(os.environ[SLURM_PROCID]), int(os.environ[SLURM_NTASKS]) | ||||
|     assert 0 <= proc_id < ntasks, 'invalid proc_id {:} vs ntasks {:}'.format(proc_id, ntasks) | ||||
|     scales = [int(float(i)/ntasks*len(all_indexes)) for i in range(ntasks)] + [len(all_indexes)] | ||||
|     per_job = [] | ||||
|     for i in range(ntasks): | ||||
|       xs, xe = min(max(scales[i],0), len(all_indexes)-1), min(max(scales[i+1]-1,0), len(all_indexes)-1) | ||||
|       per_job.append((xs, xe)) | ||||
|     for i, srange in enumerate(per_job): | ||||
|       print('  -->> {:2d}/{:02d} : {:}'.format(i, ntasks, srange)) | ||||
|     current_range = per_job[proc_id] | ||||
|     all_indexes = [all_indexes[i] for i in range(current_range[0], current_range[1]+1)] | ||||
|     # set the device id | ||||
|     device = proc_id % torch.cuda.device_count() | ||||
|     torch.cuda.set_device(device) | ||||
|     print('  set the device id = {:}'.format(device)) | ||||
|   print('{:} [FILTER-INDEXES] : after filtering there are {:} architectures in total'.format(time_string(), len(all_indexes))) | ||||
|   return all_indexes | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (size search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode',        type=str, required=True, choices=['new', 'cover'], help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NATS-Bench-size', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--candidateC',  type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') | ||||
|   parser.add_argument('--num_layers',  type=int, default=5,      help='The number of layers in a network.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   parser.add_argument('--workers',     type=int, default=8,      help='The number of data loading workers (default: 2)') | ||||
|   parser.add_argument('--srange' ,     type=str, required=True,  help='The range of models to be evaluated') | ||||
|   parser.add_argument('--datasets',    type=str, nargs='+',      help='The applied datasets.') | ||||
|   parser.add_argument('--xpaths',      type=str, nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--splits',      type=int, nargs='+',      help='The root path for this dataset.') | ||||
|   parser.add_argument('--hyper',       type=str, default='12', choices=['01', '12', '90'], help='The tag for hyper-parameters.') | ||||
|   parser.add_argument('--seeds'  ,     type=int, nargs='+',      help='The range of models to be evaluated') | ||||
|   args = parser.parse_args() | ||||
|  | ||||
|   nets = traverse_net(args.candidateC, args.num_layers) | ||||
|   if len(nets) != args.check_N: | ||||
|     raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|  | ||||
|   opt_config = './configs/nas-benchmark/hyper-opts/{:}E.config'.format(args.hyper) | ||||
|   if not os.path.isfile(opt_config): | ||||
|     raise ValueError('{:} is not a file.'.format(opt_config)) | ||||
|   save_dir = Path(args.save_dir) / 'raw-data-{:}'.format(args.hyper) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   if not isinstance(args.srange, str): | ||||
|     raise ValueError('Invalid scheme for {:}'.format(args.srange)) | ||||
|   srangestr = "".join(args.srange.split()) | ||||
|   to_evaluate_indexes = set() | ||||
|   for srange in srangestr.split(','): | ||||
|     srange = srange.split('-') | ||||
|     if len(srange) != 2: | ||||
|       raise ValueError('invalid srange : {:}'.format(srange)) | ||||
|     assert len(srange[0]) == len(srange[1]) == 5, 'invalid srange : {:}'.format(srange) | ||||
|     srange = (int(srange[0]), int(srange[1])) | ||||
|     if not (0 <= srange[0] <= srange[1] < args.check_N): | ||||
|       raise ValueError('{:} vs {:} vs {:}'.format(srange[0], srange[1], args.check_N)) | ||||
|     for i in range(srange[0], srange[1]+1): | ||||
|       to_evaluate_indexes.add(i) | ||||
|  | ||||
|   if not len(args.seeds): | ||||
|     raise ValueError('invalid length of seeds args: {:}'.format(args.seeds)) | ||||
|   if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): | ||||
|     raise ValueError('invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits))) | ||||
|   if args.workers <= 0: | ||||
|     raise ValueError('invalid number of workers : {:}'.format(args.workers)) | ||||
|  | ||||
|   target_indexes = filter_indexes(to_evaluate_indexes, args.mode, save_dir, args.seeds) | ||||
|    | ||||
|   assert torch.cuda.is_available(), 'CUDA is not available.' | ||||
|   torch.backends.cudnn.enabled = True | ||||
|   torch.backends.cudnn.deterministic = True | ||||
|   torch.set_num_threads(args.workers) | ||||
|  | ||||
|   main(save_dir, args.workers, args.datasets, args.xpaths, args.splits, tuple(args.seeds), nets, opt_config, target_indexes, args.mode == 'cover') | ||||
							
								
								
									
										80
									
								
								exps/NATS-Bench/sss-file-manager.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										80
									
								
								exps/NATS-Bench/sss-file-manager.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,80 @@ | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01                          # | ||||
| ############################################################################## | ||||
| # Usage: python exps/NATS-Bench/sss-file-manager.py --mode check             # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, argparse | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| from collections import defaultdict | ||||
| from copy    import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
| from config_utils import dict2config, load_config | ||||
| from procedures   import bench_evaluate_for_seed | ||||
| from procedures   import get_machine_info | ||||
| from datasets     import get_datasets | ||||
| from log_utils    import Logger, AverageMeter, time_string, convert_secs2time | ||||
|  | ||||
|  | ||||
| def obtain_valid_ckp(save_dir: Text, total: int): | ||||
|   possible_seeds = [777, 888, 999] | ||||
|   seed2ckps = defaultdict(list) | ||||
|   miss2ckps = defaultdict(list) | ||||
|   for i in range(total): | ||||
|     for seed in possible_seeds: | ||||
|       path = os.path.join(save_dir, 'arch-{:06d}-seed-{:04d}.pth'.format(i, seed)) | ||||
|       if os.path.exists(path): | ||||
|         seed2ckps[seed].append(i) | ||||
|       else: | ||||
|         miss2ckps[seed].append(i) | ||||
|   for seed, xlist in seed2ckps.items(): | ||||
|     print('[{:}] [seed={:}] has {:5d}/{:5d} | miss {:5d}/{:5d}'.format(save_dir, seed, len(xlist), total, total-len(xlist), total)) | ||||
|   return dict(seed2ckps), dict(miss2ckps) | ||||
|      | ||||
|  | ||||
| def copy_data(source_dir, target_dir, meta_path): | ||||
|   target_dir = Path(target_dir) | ||||
|   target_dir.mkdir(parents=True, exist_ok=True) | ||||
|   miss2ckps = torch.load(meta_path)['miss2ckps'] | ||||
|   s2t = {} | ||||
|   for seed, xlist in miss2ckps.items(): | ||||
|     for i in xlist: | ||||
|       file_name = 'arch-{:06d}-seed-{:04d}.pth'.format(i, seed) | ||||
|       source_path = os.path.join(source_dir, file_name) | ||||
|       target_path = os.path.join(target_dir, file_name) | ||||
|       if os.path.exists(source_path): | ||||
|         s2t[source_path] = target_path | ||||
|   print('Map from {:} to {:}, find {:} missed ckps.'.format(source_dir, target_dir, len(s2t))) | ||||
|   for s, t in s2t.items(): | ||||
|     copyfile(s, t) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (size search space) file manager.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode',        type=str, required=True, choices=['check', 'copy'], help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NATS-Bench-size', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
|   possible_configs = ['01', '12', '90'] | ||||
|   if args.mode == 'check': | ||||
|     for config in possible_configs: | ||||
|       cur_save_dir = '{:}/raw-data-{:}'.format(args.save_dir, config) | ||||
|       seed2ckps, miss2ckps = obtain_valid_ckp(cur_save_dir, args.check_N) | ||||
|       torch.save(dict(seed2ckps=seed2ckps, miss2ckps=miss2ckps), '{:}/meta-{:}.pth'.format(args.save_dir, config)) | ||||
|   elif args.mode == 'copy': | ||||
|     for config in possible_configs: | ||||
|       cur_save_dir = '{:}/raw-data-{:}'.format(args.save_dir, config) | ||||
|       cur_copy_dir = '{:}/copy-{:}'.format(args.save_dir, config) | ||||
|       cur_meta_path = '{:}/meta-{:}.pth'.format(args.save_dir, config) | ||||
|       if os.path.exists(cur_meta_path): | ||||
|         copy_data(cur_save_dir, cur_copy_dir, cur_meta_path) | ||||
|       else: | ||||
|         print('Do not find : {:}'.format(cur_meta_path)) | ||||
|   else: | ||||
|     raise ValueError('invalid mode : {:}'.format(args.mode)) | ||||
		Reference in New Issue
	
	Block a user