re-organize NATS-Bench
This commit is contained in:
		| @@ -67,7 +67,8 @@ At the moment, this project provides the following algorithms and scripts to run | ||||
|     <tr> <!-- (7-th row) --> | ||||
|     <td align="center" valign="middle"> ... </td> | ||||
|     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||
|     <td align="center" valign="middle"> Please check the original papers </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a>  <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (start second block) --> | ||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> | ||||
|   | ||||
| @@ -59,10 +59,17 @@ | ||||
|     <td align="center" valign="middle"> <a href="https://openreview.net/forum?id=HJxyZkBKDr"> NAS-Bench-201: Extending the Scope of Reproducible Neural Architecture Search</a> </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (6-th row) --> | ||||
|     <td align="center" valign="middle"> NATS-Bench </td> | ||||
|     <td align="center" valign="middle"> <a href="https://xuanyidong.com/assets/projects/NATS-Bench"> NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size</a> </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||
|     </tr> | ||||
|  | ||||
|     <tr> <!-- (6-th row) --> | ||||
|     <td align="center" valign="middle"> ... </td> | ||||
|     <td align="center" valign="middle"> ENAS / REA / REINFORCE / BOHB </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> </td> | ||||
|     <td align="center" valign="middle"> Please check the original papers. </td> | ||||
|     <td align="center" valign="middle"> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NAS-Bench-201.md">NAS-Bench-201.md</a> <a href="https://github.com/D-X-Y/AutoDL-Projects/tree/master/docs/NATS-Bench.md">NATS-Bench.md</a> </td> | ||||
|     </tr> | ||||
|     <tr> <!-- (start second block) --> | ||||
|     <td rowspan="1" align="center" valign="middle" halign="middle"> HPO </td> | ||||
|   | ||||
| @@ -7,11 +7,23 @@ We analyze the validity of our benchmark in terms of various criteria and perfor | ||||
| We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-the-art NAS algorithms on it. All logs and diagnostic information trained using the same setup for each candidate are provided. | ||||
| This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment. | ||||
|  | ||||
|  | ||||
| **coming soon!** | ||||
|  | ||||
|  | ||||
| ## How to Use NATS-Bench | ||||
|  | ||||
|  | ||||
| ## The Procedure of Creating NATS-Bench | ||||
|  | ||||
| 1, train all architecture candidate in the size search space with 90 epochs and use the random seed of `777`. | ||||
| ``` | ||||
| bash ./scripts/NATS-Bench/train-shapes.sh 00000-32767 90 777 | ||||
| ``` | ||||
| The checkpoint of all candidates are located at `output/NATS-Bench-size` by default | ||||
|  | ||||
|  | ||||
|  | ||||
| ## To Reproduce 13 Baseline NAS Algorithms in NAS-Bench-201 | ||||
|  | ||||
| ### Reproduce NAS methods on the topology search space | ||||
| @@ -50,6 +62,7 @@ python ./exps/algos-v2/search-cell.py --dataset ImageNet16-120 --data_path $TORC | ||||
|  | ||||
| ### Reproduce NAS methods on the size search space | ||||
|  | ||||
|  | ||||
| ### Final Discovered Architectures for Each Algorithm | ||||
|  | ||||
| The architecture index can be found by use `api.query_index_by_arch(architecture_string)`. | ||||
|   | ||||
| @@ -1,8 +1,8 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.08           # | ||||
| ############################################################### | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.07                          # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, argparse | ||||
| from typing import List, Text, Dict, Any | ||||
| from PIL     import ImageFile | ||||
| @@ -189,9 +189,9 @@ def filter_indexes(xlist, mode, save_dir, seeds): | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (size search space)', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode',        type=str, required=True, choices=['new', 'cover'], help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NATS-Bench-size', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--candidateC',  type=int, nargs='+', default=[8, 16, 24, 32, 40, 48, 56, 64], help='.') | ||||
|   parser.add_argument('--num_layers',  type=int, default=5,      help='The number of layers in a network.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
| @@ -206,10 +206,12 @@ if __name__ == '__main__': | ||||
|   args = parser.parse_args() | ||||
| 
 | ||||
|   nets = traverse_net(args.candidateC, args.num_layers) | ||||
|   if len(nets) != args.check_N: raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
|   if len(nets) != args.check_N: | ||||
|     raise ValueError('Pre-num-check failed : {:} vs {:}'.format(len(nets), args.check_N)) | ||||
| 
 | ||||
|   opt_config = './configs/nas-benchmark/hyper-opts/{:}E.config'.format(args.hyper) | ||||
|   if not os.path.isfile(opt_config): raise ValueError('{:} is not a file.'.format(opt_config)) | ||||
|   if not os.path.isfile(opt_config): | ||||
|     raise ValueError('{:} is not a file.'.format(opt_config)) | ||||
|   save_dir = Path(args.save_dir) / 'raw-data-{:}'.format(args.hyper) | ||||
|   save_dir.mkdir(parents=True, exist_ok=True) | ||||
|   if not isinstance(args.srange, str): | ||||
| @@ -218,7 +220,8 @@ if __name__ == '__main__': | ||||
|   to_evaluate_indexes = set() | ||||
|   for srange in srangestr.split(','): | ||||
|     srange = srange.split('-') | ||||
|     if len(srange) != 2: raise ValueError('invalid srange : {:}'.format(srange)) | ||||
|     if len(srange) != 2: | ||||
|       raise ValueError('invalid srange : {:}'.format(srange)) | ||||
|     assert len(srange[0]) == len(srange[1]) == 5, 'invalid srange : {:}'.format(srange) | ||||
|     srange = (int(srange[0]), int(srange[1])) | ||||
|     if not (0 <= srange[0] <= srange[1] < args.check_N): | ||||
| @@ -226,10 +229,12 @@ if __name__ == '__main__': | ||||
|     for i in range(srange[0], srange[1]+1): | ||||
|       to_evaluate_indexes.add(i) | ||||
| 
 | ||||
|   assert len(args.seeds) > 0, 'invalid length of seeds args: {:}'.format(args.seeds) | ||||
|   if not len(args.seeds): | ||||
|     raise ValueError('invalid length of seeds args: {:}'.format(args.seeds)) | ||||
|   if not (len(args.datasets) == len(args.xpaths) == len(args.splits)): | ||||
|     raise ValueError('invalid infos : {:} vs {:} vs {:}'.format(len(args.datasets), len(args.xpaths), len(args.splits))) | ||||
|   assert args.workers > 0, 'invalid number of workers : {:}'.format(args.workers) | ||||
|   if args.workers <= 0: | ||||
|     raise ValueError('invalid number of workers : {:}'.format(args.workers)) | ||||
| 
 | ||||
|   target_indexes = filter_indexes(to_evaluate_indexes, args.mode, save_dir, args.seeds) | ||||
|    | ||||
| @@ -239,4 +244,3 @@ if __name__ == '__main__': | ||||
|   torch.set_num_threads(args.workers) | ||||
| 
 | ||||
|   main(save_dir, args.workers, args.datasets, args.xpaths, args.splits, tuple(args.seeds), nets, opt_config, target_indexes, args.mode == 'cover') | ||||
| 
 | ||||
| @@ -1,10 +1,10 @@ | ||||
| ############################################################### | ||||
| # NAS-Bench-201, ICLR 2020 (https://arxiv.org/abs/2001.00326) # | ||||
| ############################################################### | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01                          # | ||||
| ############################################################### | ||||
| # Usage: python exps/NAS-Bench-201/xshape-file.py --mode check | ||||
| ############################################################### | ||||
| ############################################################################## | ||||
| # Usage: python exps/NATS-Bench/sss-file-manager.py --mode check             # | ||||
| ############################################################################## | ||||
| import os, sys, time, torch, argparse | ||||
| from typing import List, Text, Dict, Any | ||||
| from shutil import copyfile | ||||
| @@ -55,9 +55,9 @@ def copy_data(source_dir, target_dir, meta_path): | ||||
| 
 | ||||
| 
 | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-X', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser = argparse.ArgumentParser(description='NATS-Bench (size search space) file manager.', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   parser.add_argument('--mode',        type=str, required=True, choices=['check', 'copy'], help='The script mode.') | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NAS-BENCH-202', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--save_dir',    type=str, default='output/NATS-Bench-size', help='Folder to save checkpoints and log.') | ||||
|   parser.add_argument('--check_N',     type=int, default=32768,  help='For safety.') | ||||
|   # use for train the model | ||||
|   args = parser.parse_args() | ||||
| @@ -25,7 +25,7 @@ else | ||||
|   data_path="$TORCH_HOME/cifar.python/ImageNet16" | ||||
| fi | ||||
|  | ||||
| save_dir=./output/search-cell-${space}/GDAS-${dataset}-BN${track_running_stats} | ||||
| save_dir=./output/search-cell-${space}/GDAS-FRC-${dataset}-BN${track_running_stats} | ||||
|  | ||||
| OMP_NUM_THREADS=4 python ./exps/algos/GDAS.py \ | ||||
| 	--save_dir ${save_dir} \ | ||||
|   | ||||
| @@ -1,36 +0,0 @@ | ||||
| #!/bin/bash | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # | ||||
| ##################################################### | ||||
| # bash ./scripts-search/X-X/train-shapes-01.sh 0 4 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for hyper-parameters-opt-file, and seeds" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| srange=00000-32767 | ||||
| opt=01 | ||||
| all_seeds=777 | ||||
| cpus=4 | ||||
|  | ||||
| save_dir=./output/NAS-BENCH-202/ | ||||
|  | ||||
| SLURM_PROCID=$1 SLURM_NTASKS=$2 OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \ | ||||
| 	--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| 	--splits   1       0       0        0 \ | ||||
| 	--xpaths $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python/ImageNet16 \ | ||||
| 	--workers ${cpus} \ | ||||
| 	--seeds ${all_seeds} | ||||
| @@ -1,43 +0,0 @@ | ||||
| #!/bin/bash | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # | ||||
| ##################################################### | ||||
| # SLURM_PROCID=0 SLURM_NTASKS=6 bash ./scripts-search/X-X/train-shapes-v2.sh 12 777 | ||||
| # | ||||
| # SLURM_PROCID=0 SLURM_NTASKS=4 bash ./scripts-search/X-X/train-shapes.sh 30000-32767 90 777 | ||||
| # SLURM_PROCID=0 SLURM_NTASKS=4 bash ./scripts-search/X-X/train-shapes.sh 00000-09999 90 777 | ||||
| # | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 2 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 2 parameters for hyper-parameters-opt-file, and seeds" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| #srange=01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 | ||||
| #srange=00000-00999,04000-04049,05001-05999,09001-10999,14501-14999,18501-19999,23501-24999,27501-28999,30001-32767 | ||||
| #srange=00000-09999 | ||||
| srange=10000-29999 | ||||
| opt=$1 | ||||
| all_seeds=$2 | ||||
| cpus=4 | ||||
|  | ||||
| save_dir=./output/NAS-BENCH-202/ | ||||
|  | ||||
| OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \ | ||||
| 	--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| 	--splits   1       0       0        0 \ | ||||
| 	--xpaths $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python/ImageNet16 \ | ||||
| 	--workers ${cpus} \ | ||||
| 	--seeds ${all_seeds} | ||||
| @@ -1,49 +0,0 @@ | ||||
| #!/bin/bash | ||||
| ##################################################### | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 # | ||||
| ##################################################### | ||||
| # [mars6] CUDA_VISIBLE_DEVICES=0 bash ./scripts-search/X-X/train-shapes.sh 00000-05000 12 777 | ||||
| # [mars6]   bash ./scripts-search/X-X/train-shapes.sh 05001-10000 12 777 | ||||
| # [mars20]  bash ./scripts-search/X-X/train-shapes.sh 10001-14500 12 777 | ||||
| # [mars20]  bash ./scripts-search/X-X/train-shapes.sh 14501-18000 12 777 | ||||
| # [saturn4] bash ./scripts-search/X-X/train-shapes.sh 18001-19500 12 777 | ||||
| # [saturn4] bash ./scripts-search/X-X/train-shapes.sh 19501-23500 12 777 | ||||
| # [saturn4] bash ./scripts-search/X-X/train-shapes.sh 23501-27500 12 777 | ||||
| # [saturn4] bash ./scripts-search/X-X/train-shapes.sh 27501-30000 12 777 | ||||
| # [x] bash ./scripts-search/X-X/train-shapes.sh 30001-32767 12 777 | ||||
| # | ||||
| # CUDA_VISIBLE_DEVICES=2 bash ./scripts-search/X-X/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 12 777 | ||||
| # SLURM_PROCID=1 SLURM_NTASKS=5 bash ./scripts-search/X-X/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 90 777 | ||||
| # [GCP] bash ./scripts-search/X-X/train-shapes.sh 00000-09999 90 777 | ||||
| # [UTS] bash ./scripts-search/X-X/train-shapes.sh 30000-32767 90 777 | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 3 parameters for start-and-end, hyper-parameters-opt-file, and seeds" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| srange=$1 | ||||
| opt=$2 | ||||
| all_seeds=$3 | ||||
| cpus=4 | ||||
|  | ||||
| save_dir=./output/NAS-BENCH-202/ | ||||
|  | ||||
| OMP_NUM_THREADS=${cpus} python exps/NAS-Bench-201/xshapes.py \ | ||||
| 	--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| 	--splits   1       0       0        0 \ | ||||
| 	--xpaths $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python/ImageNet16 \ | ||||
| 	--workers ${cpus} \ | ||||
| 	--seeds ${all_seeds} | ||||
							
								
								
									
										52
									
								
								scripts/NATS-Bench/train-shapes.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										52
									
								
								scripts/NATS-Bench/train-shapes.sh
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,52 @@ | ||||
| #!/bin/bash | ||||
| ############################################################################## | ||||
| # NATS-Bench: Benchmarking NAS algorithms for Architecture Topology and Size # | ||||
| ############################################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01                          # | ||||
| ############################################################################## | ||||
| # CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-shapes.sh 00000-05000 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 05001-10000 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 10001-14500 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 14501-18000 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 18001-19500 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 19501-23500 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 23501-27500 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 27501-30000 12 777 | ||||
| # bash ./scripts/NATS-Bench/train-shapes.sh 30001-32767 12 777 | ||||
| # | ||||
| # CUDA_VISIBLE_DEVICES=2 bash ./scripts/NATS-Bench/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 12 777 | ||||
| # SLURM_PROCID=1 SLURM_NTASKS=5 bash ./scripts/NATS-Bench/train-shapes.sh 01000-03999,04050-05000,06000-09000,11000-14500,15000-18500,20000-23500,25000-27500,29000-30000 90 777 | ||||
| # [GCP] bash ./scripts/NATS-Bench/train-shapes.sh 00000-09999 90 777 | ||||
| # [UTS] bash ./scripts/NATS-Bench/train-shapes.sh 30000-32767 90 777 | ||||
| ############################################################################## | ||||
| echo script name: $0 | ||||
| echo $# arguments | ||||
| if [ "$#" -ne 3 ] ;then | ||||
|   echo "Input illegal number of parameters " $# | ||||
|   echo "Need 3 parameters for start-and-end, hyper-parameters-opt-file, and seeds" | ||||
|   exit 1 | ||||
| fi | ||||
| if [ "$TORCH_HOME" = "" ]; then | ||||
|   echo "Must set TORCH_HOME envoriment variable for data dir saving" | ||||
|   exit 1 | ||||
| else | ||||
|   echo "TORCH_HOME : $TORCH_HOME" | ||||
| fi | ||||
|  | ||||
| srange=$1 | ||||
| opt=$2 | ||||
| all_seeds=$3 | ||||
| cpus=4 | ||||
|  | ||||
| save_dir=./output/NATS-Bench-size/ | ||||
|  | ||||
| OMP_NUM_THREADS=${cpus} python exps/NATS-Bench/main-sss.py \ | ||||
| 	--mode new --srange ${srange} --hyper ${opt} --save_dir ${save_dir} \ | ||||
| 	--datasets cifar10 cifar10 cifar100 ImageNet16-120 \ | ||||
| 	--splits   1       0       0        0 \ | ||||
| 	--xpaths $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python \ | ||||
| 		 $TORCH_HOME/cifar.python/ImageNet16 \ | ||||
| 	--workers ${cpus} \ | ||||
| 	--seeds ${all_seeds} | ||||
		Reference in New Issue
	
	Block a user