update API
This commit is contained in:
		| @@ -123,6 +123,13 @@ api.reload('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-BENCH-201-4-v1.0-arch | ||||
| weights = api.get_net_param(3, 'cifar10', None) # Obtaining the weights of all trials for the 3-th architecture on cifar10. It will returns a dict, where the key is the seed and the value is the trained weights. | ||||
| ``` | ||||
|  | ||||
| To obtain the training and evaluation information (please see the comments [here](https://github.com/D-X-Y/AutoDL-Projects/blob/master/lib/nas_201_api/api.py#L172)): | ||||
| ``` | ||||
| api.get_more_info(112, 'cifar10', None, False, True) | ||||
| api.get_more_info(112, 'ImageNet16-120', None, False, True) # the info of last training epoch for 112-th architecture (use 200-epoch-hyper-parameter and randomly select a trial) | ||||
| ``` | ||||
|  | ||||
|  | ||||
|  | ||||
| ## Instruction to Re-Generate NAS-Bench-201 | ||||
|  | ||||
|   | ||||
| @@ -1,206 +0,0 @@ | ||||
| # [D-X-Y] | ||||
| # Run DARTS | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps-tf/one-shot-nas.py --epochs 50 | ||||
| # | ||||
| import os, sys, math, time, random, argparse | ||||
| import tensorflow as tf | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| # self-lib | ||||
| from tf_models import get_cell_based_tiny_net | ||||
| from tf_optimizers import SGDW, AdamW | ||||
| from config_utils import dict2config | ||||
| from log_utils import time_string | ||||
| from models import CellStructure | ||||
|  | ||||
|  | ||||
| def pre_process(image_a, label_a, image_b, label_b): | ||||
|   def standard_func(image): | ||||
|     x = tf.pad(image, [[4, 4], [4, 4], [0, 0]]) | ||||
|     x = tf.image.random_crop(x, [32, 32, 3]) | ||||
|     x = tf.image.random_flip_left_right(x) | ||||
|     return x | ||||
|   return standard_func(image_a), label_a, standard_func(image_b), label_b | ||||
|  | ||||
|  | ||||
| class CosineAnnealingLR(object): | ||||
|   def __init__(self, warmup_epochs, epochs, initial_lr, min_lr): | ||||
|     self.warmup_epochs = warmup_epochs | ||||
|     self.epochs = epochs | ||||
|     self.initial_lr = initial_lr | ||||
|     self.min_lr = min_lr | ||||
|  | ||||
|   def get_lr(self, epoch): | ||||
|     if epoch < self.warmup_epochs: | ||||
|       lr = self.min_lr + (epoch/self.warmup_epochs) * (self.initial_lr-self.min_lr) | ||||
|     elif epoch >= self.epochs: | ||||
|       lr = self.min_lr | ||||
|     else: | ||||
|       lr = self.min_lr + (self.initial_lr-self.min_lr) * 0.5 * (1 + math.cos(math.pi * epoch / self.epochs)) | ||||
|     return lr | ||||
|        | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   cifar10 = tf.keras.datasets.cifar10 | ||||
|  | ||||
|   (x_train, y_train), (x_test, y_test) = cifar10.load_data() | ||||
|   x_train, x_test = x_train / 255.0, x_test / 255.0 | ||||
|   x_train, x_test = x_train.astype('float32'), x_test.astype('float32') | ||||
|   y_train, y_test = y_train.reshape(-1), y_test.reshape(-1) | ||||
|  | ||||
|   # Add a channels dimension | ||||
|   all_indexes = list(range(x_train.shape[0])) | ||||
|   random.shuffle(all_indexes) | ||||
|   s_train_idxs, s_valid_idxs = all_indexes[::2], all_indexes[1::2] | ||||
|   search_train_x, search_train_y = x_train[s_train_idxs], y_train[s_train_idxs] | ||||
|   search_valid_x, search_valid_y = x_train[s_valid_idxs], y_train[s_valid_idxs] | ||||
|   #x_train, x_test = x_train[..., tf.newaxis], x_test[..., tf.newaxis] | ||||
|    | ||||
|   # Use tf.data | ||||
|   #train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(64) | ||||
|   search_ds = tf.data.Dataset.from_tensor_slices((search_train_x, search_train_y, search_valid_x, search_valid_y)) | ||||
|   search_ds = search_ds.map(pre_process).shuffle(1000).batch(64) | ||||
|  | ||||
|   test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) | ||||
|  | ||||
|   # Create an instance of the model | ||||
|   config = dict2config({'name': 'DARTS', | ||||
|                         'C'   : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, | ||||
|                         'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None) | ||||
|   model = get_cell_based_tiny_net(config) | ||||
|   num_iters_per_epoch = int(tf.data.experimental.cardinality(search_ds).numpy()) | ||||
|   #lr_schedular = tf.keras.experimental.CosineDecay(xargs.w_lr_max, num_iters_per_epoch*xargs.epochs, xargs.w_lr_min / xargs.w_lr_max) | ||||
|   lr_schedular = CosineAnnealingLR(0, xargs.epochs, xargs.w_lr_max, xargs.w_lr_min) | ||||
|   # Choose optimizer | ||||
|   loss_object = tf.keras.losses.CategoricalCrossentropy() | ||||
|   w_optimizer = SGDW(learning_rate=xargs.w_lr_max, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) | ||||
|   a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) | ||||
|   #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #### | ||||
|   # metrics | ||||
|   train_loss = tf.keras.metrics.Mean(name='train_loss') | ||||
|   train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') | ||||
|   valid_loss = tf.keras.metrics.Mean(name='valid_loss') | ||||
|   valid_accuracy = tf.keras.metrics.CategoricalAccuracy(name='valid_accuracy') | ||||
|   test_loss = tf.keras.metrics.Mean(name='test_loss') | ||||
|   test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') | ||||
|    | ||||
|   @tf.function | ||||
|   def search_step(train_images, train_labels, valid_images, valid_labels): | ||||
|     # optimize weights | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(train_images, True) | ||||
|       w_loss = loss_object(train_labels, predictions) | ||||
|     net_w_param = model.get_weights() | ||||
|     gradients = tape.gradient(w_loss, net_w_param) | ||||
|     w_optimizer.apply_gradients(zip(gradients, net_w_param)) | ||||
|     train_loss(w_loss) | ||||
|     train_accuracy(train_labels, predictions) | ||||
|     # optimize alphas | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(valid_images, True) | ||||
|       a_loss = loss_object(valid_labels, predictions) | ||||
|     net_a_param = model.get_alphas() | ||||
|     gradients = tape.gradient(a_loss, net_a_param) | ||||
|     a_optimizer.apply_gradients(zip(gradients, net_a_param)) | ||||
|     valid_loss(a_loss) | ||||
|     valid_accuracy(valid_labels, predictions) | ||||
|  | ||||
|   # IFT with Neumann approximation | ||||
|   @tf.function | ||||
|   def search_step_IFTNA(train_images, train_labels, valid_images, valid_labels, max_step): | ||||
|     # optimize weights | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(train_images, True) | ||||
|       w_loss = loss_object(train_labels, predictions) | ||||
|     # get the weights | ||||
|     net_w_param = model.get_weights() | ||||
|     net_a_param = model.get_alphas() | ||||
|     gradients = tape.gradient(w_loss, net_w_param) | ||||
|     w_optimizer.apply_gradients(zip(gradients, net_w_param)) | ||||
|     train_loss(w_loss) | ||||
|     train_accuracy(train_labels, predictions) | ||||
|     # optimize alphas | ||||
|     with tf.GradientTape(persistent=True) as tape: | ||||
|       predictions = model(valid_images, True) | ||||
|       val_loss = loss_object(valid_labels, predictions) | ||||
|       predictions = model(train_images, True) | ||||
|       trn_loss = loss_object(train_labels, predictions) | ||||
|       # ---- | ||||
|       dV_dW = tape.gradient(val_loss, net_w_param) | ||||
|       # approxInverseHVP to calculate v2 | ||||
|       sum_p = v1 = dV_dW | ||||
|       dT_dW = tape.gradient(trn_loss, net_w_param) | ||||
|       for j in range(1, max_step): | ||||
|         temp_dot = tape.gradient(dT_dW, net_w_param, output_gradients=v1) | ||||
|         v1 = [tf.subtract(A, B) for A, B in zip(v1, temp_dot)] | ||||
|         sum_p = [tf.add(A, B) for A, B in zip(sum_p, v1)] | ||||
|       # calculate v3 | ||||
|       dT_dl = tape.gradient(trn_loss, net_a_param) | ||||
|       import pdb; pdb.set_trace() | ||||
|       v3 = tape.gradient(dT_dl, net_w_param, output_gradients=sum_p) | ||||
|     dV_dl = tape.gradient(val_loss, net_a_param) | ||||
|     a_gradients = [tf.subtract(A, B) for A, B in zip(dV_dl, v3)] | ||||
|     import pdb; pdb.set_trace() | ||||
|     print('--') | ||||
|  | ||||
|   # TEST | ||||
|   @tf.function | ||||
|   def test_step(images, labels): | ||||
|     predictions = model(images) | ||||
|     t_loss = loss_object(labels, predictions) | ||||
|  | ||||
|     test_loss(t_loss) | ||||
|     test_accuracy(labels, predictions) | ||||
|  | ||||
|   print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, num_iters_per_epoch)) | ||||
|  | ||||
|   for epoch in range(xargs.epochs): | ||||
|     # Reset the metrics at the start of the next epoch | ||||
|     train_loss.reset_states() ; train_accuracy.reset_states() | ||||
|     test_loss.reset_states()  ; test_accuracy.reset_states() | ||||
|     cur_lr  = lr_schedular.get_lr(epoch) | ||||
|     tf.keras.backend.set_value(w_optimizer.lr, cur_lr) | ||||
|  | ||||
|     for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: | ||||
|       #search_step(trn_imgs, trn_labels, val_imgs, val_labels) | ||||
|       trn_labels, val_labels = tf.one_hot(trn_labels, 10), tf.one_hot(val_labels, 10) | ||||
|       search_step_IFTNA(trn_imgs, trn_labels, val_imgs, val_labels, 5) | ||||
|     genotype = model.genotype() | ||||
|     genotype = CellStructure(genotype) | ||||
|  | ||||
|     #for test_images, test_labels in test_ds: | ||||
|     #  test_step(test_images, test_labels) | ||||
|  | ||||
|     cur_lr = float(tf.keras.backend.get_value(w_optimizer.lr)) | ||||
|     template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | lr={:.6f}' | ||||
|     print(template.format(time_string(), epoch+1, xargs.epochs, | ||||
|                           train_loss.result(), | ||||
|                           train_accuracy.result()*100, | ||||
|                           valid_loss.result(), | ||||
|                           valid_accuracy.result()*100, | ||||
|                           cur_lr)) | ||||
|     print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   # training details | ||||
|   parser.add_argument('--epochs'            , type=int  ,   default= 250  ,   help='') | ||||
|   parser.add_argument('--w_lr_max'          , type=float,   default= 0.025,   help='') | ||||
|   parser.add_argument('--w_lr_min'          , type=float,   default= 0.001,   help='') | ||||
|   parser.add_argument('--w_weight_decay'    , type=float,   default=0.0005,   help='') | ||||
|   parser.add_argument('--w_momentum'        , type=float,   default= 0.9  ,   help='') | ||||
|   parser.add_argument('--arch_learning_rate', type=float,   default=0.0003,   help='') | ||||
|   parser.add_argument('--arch_weight_decay' , type=float,   default=0.001,    help='') | ||||
|   # marco structure | ||||
|   parser.add_argument('--channel'           , type=int  ,   default=16,       help='') | ||||
|   parser.add_argument('--num_cells'         , type=int  ,   default= 5,       help='') | ||||
|   parser.add_argument('--max_nodes'         , type=int  ,   default= 4,       help='') | ||||
|   args = parser.parse_args() | ||||
|   main( args ) | ||||
| @@ -170,10 +170,28 @@ class NASBench201API(object): | ||||
|     return archresult.get_comput_costs(dataset) | ||||
|  | ||||
|   # obtain the metric for the `index`-th architecture | ||||
|   # `dataset` indicates the dataset: | ||||
|   #   'cifar10-valid'  : using the proposed train set of CIFAR-10 as the training set | ||||
|   #   'cifar10'        : using the proposed train+valid set of CIFAR-10 as the training set | ||||
|   #   'cifar100'       : using the proposed train set of CIFAR-100 as the training set | ||||
|   #   'ImageNet16-120' : using the proposed train set of ImageNet-16-120 as the training set | ||||
|   # `iepoch` indicates the index of training epochs from 0 to 11/199. | ||||
|   #   When iepoch=None, it will return the metric for the last training epoch | ||||
|   #   When iepoch=11, it will return the metric for the 11-th training epoch (starting from 0) | ||||
|   # `use_12epochs_result` indicates different hyper-parameters for training | ||||
|   #   When use_12epochs_result=True, it trains the network with 12 epochs and the LR decayed from 0.1 to 0 within 12 epochs | ||||
|   #   When use_12epochs_result=False, it trains the network with 200 epochs and the LR decayed from 0.1 to 0 within 200 epochs | ||||
|   # `is_random` | ||||
|   #   When is_random=True, the performance of a random architecture will be returned | ||||
|   #   When is_random=False, the performanceo of all trials will be averaged. | ||||
|   def get_more_info(self, index, dataset, iepoch=None, use_12epochs_result=False, is_random=True): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     archresult = arch2infos[index] | ||||
|     # if randomly select one trial, select the seed at first | ||||
|     if isinstance(is_random, bool) and is_random: | ||||
|       seeds = archresult.get_dataset_seeds(dataset) | ||||
|       is_random = random.choice(seeds) | ||||
|     if dataset == 'cifar10-valid': | ||||
|       train_info = archresult.get_metrics(dataset, 'train'   , iepoch=iepoch, is_random=is_random) | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=is_random) | ||||
| @@ -202,7 +220,7 @@ class NASBench201API(object): | ||||
|         else: | ||||
|           test__info = archresult.get_metrics(dataset, 'x-test', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
|         valid_info = None | ||||
|         test__info = None | ||||
|       try: | ||||
|         valid_info = archresult.get_metrics(dataset, 'x-valid', iepoch=iepoch, is_random=is_random) | ||||
|       except: | ||||
| @@ -213,7 +231,7 @@ class NASBench201API(object): | ||||
|         est_valid_info = None | ||||
|       xifo = {'train-loss'    : train_info['loss'], | ||||
|               'train-accuracy': train_info['accuracy']} | ||||
|       if valid_info is not None: | ||||
|       if test__info is not None: | ||||
|         xifo['test-loss'] = test__info['loss'], | ||||
|         xifo['test-accuracy'] = test__info['accuracy'] | ||||
|       if valid_info is not None: | ||||
| @@ -347,14 +365,20 @@ class ArchResults(object): | ||||
|         info = result.get_eval(setname, iepoch) | ||||
|       for key, value in info.items(): infos[key].append( value ) | ||||
|     return_info = dict() | ||||
|     if is_random: | ||||
|     if isinstance(is_random, bool) and is_random: # randomly select one | ||||
|       index = random.randint(0, len(results)-1) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     else: | ||||
|     elif isinstance(is_random, bool) and not is_random: # average | ||||
|       for key, value in infos.items(): | ||||
|         if len(value) > 0 and value[0] is not None: | ||||
|           return_info[key] = np.mean(value) | ||||
|         else: return_info[key] = None | ||||
|     elif isinstance(is_random, int): # specify the seed | ||||
|       if is_random not in x_seeds: raise ValueError('can not find random seed ({:}) from {:}'.format(is_random, x_seeds)) | ||||
|       index = x_seeds.index(is_random) | ||||
|       for key, value in infos.items(): return_info[key] = value[index] | ||||
|     else: | ||||
|       raise ValueError('invalid value for is_random: {:}'.format(is_random)) | ||||
|     return return_info | ||||
|  | ||||
|   def show(self, is_print=False): | ||||
| @@ -363,6 +387,9 @@ class ArchResults(object): | ||||
|   def get_dataset_names(self): | ||||
|     return list(self.dataset_seed.keys()) | ||||
|  | ||||
|   def get_dataset_seeds(self, dataset): | ||||
|     return copy.deepcopy( self.dataset_seed[dataset] ) | ||||
|  | ||||
|   def get_net_param(self, dataset, seed=None): | ||||
|     if seed is None: | ||||
|       x_seeds = self.dataset_seed[dataset] | ||||
|   | ||||
		Reference in New Issue
	
	Block a user