Update codes for draw
This commit is contained in:
parent
5456939d81
commit
3fb3222e82
133
exps/NATS-Bench/draw-fig6.py
Normal file
133
exps/NATS-Bench/draw-fig6.py
Normal file
@ -0,0 +1,133 @@
|
||||
###############################################################
|
||||
# NATS-Bench (https://arxiv.org/pdf/2009.00437.pdf) #
|
||||
# The code to draw Figure 6 in our paper. #
|
||||
###############################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.06 #
|
||||
###############################################################
|
||||
# Usage: python exps/NATS-Bench/draw-fig6.py --search_space tss
|
||||
# Usage: python exps/NATS-Bench/draw-fig6.py --search_space sss
|
||||
###############################################################
|
||||
import os, gc, sys, time, torch, argparse
|
||||
import numpy as np
|
||||
from typing import List, Text, Dict, Any
|
||||
from shutil import copyfile
|
||||
from collections import defaultdict, OrderedDict
|
||||
from copy import deepcopy
|
||||
from pathlib import Path
|
||||
import matplotlib
|
||||
import seaborn as sns
|
||||
matplotlib.use('agg')
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.ticker as ticker
|
||||
|
||||
lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve()
|
||||
if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir))
|
||||
from config_utils import dict2config, load_config
|
||||
from nats_bench import create
|
||||
from log_utils import time_string
|
||||
|
||||
|
||||
def fetch_data(root_dir='./output/search', search_space='tss', dataset=None):
|
||||
ss_dir = '{:}-{:}'.format(root_dir, search_space)
|
||||
alg2name, alg2path = OrderedDict(), OrderedDict()
|
||||
alg2name['REA'] = 'R-EA-SS3'
|
||||
alg2name['REINFORCE'] = 'REINFORCE-0.01'
|
||||
alg2name['RANDOM'] = 'RANDOM'
|
||||
alg2name['BOHB'] = 'BOHB'
|
||||
for alg, name in alg2name.items():
|
||||
alg2path[alg] = os.path.join(ss_dir, dataset, name, 'results.pth')
|
||||
assert os.path.isfile(alg2path[alg]), 'invalid path : {:}'.format(alg2path[alg])
|
||||
alg2data = OrderedDict()
|
||||
for alg, path in alg2path.items():
|
||||
data = torch.load(path)
|
||||
for index, info in data.items():
|
||||
info['time_w_arch'] = [(x, y) for x, y in zip(info['all_total_times'], info['all_archs'])]
|
||||
for j, arch in enumerate(info['all_archs']):
|
||||
assert arch != -1, 'invalid arch from {:} {:} {:} ({:}, {:})'.format(alg, search_space, dataset, index, j)
|
||||
alg2data[alg] = data
|
||||
return alg2data
|
||||
|
||||
|
||||
def query_performance(api, data, dataset, ticket):
|
||||
results, is_size_space = [], api.search_space_name == 'size'
|
||||
for i, info in data.items():
|
||||
time_w_arch = sorted(info['time_w_arch'], key=lambda x: abs(x[0]-ticket))
|
||||
time_a, arch_a = time_w_arch[0]
|
||||
time_b, arch_b = time_w_arch[1]
|
||||
info_a = api.get_more_info(arch_a, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
info_b = api.get_more_info(arch_b, dataset=dataset, hp=90 if is_size_space else 200, is_random=False)
|
||||
accuracy_a, accuracy_b = info_a['test-accuracy'], info_b['test-accuracy']
|
||||
interplate = (time_b-ticket) / (time_b-time_a) * accuracy_a + (ticket-time_a) / (time_b-time_a) * accuracy_b
|
||||
results.append(interplate)
|
||||
return sum(results) / len(results)
|
||||
|
||||
|
||||
y_min_s = {('cifar10', 'tss'): 90,
|
||||
('cifar10', 'sss'): 92,
|
||||
('cifar100', 'tss'): 65,
|
||||
('cifar100', 'sss'): 65,
|
||||
('ImageNet16-120', 'tss'): 36,
|
||||
('ImageNet16-120', 'sss'): 40}
|
||||
|
||||
y_max_s = {('cifar10', 'tss'): 94.5,
|
||||
('cifar10', 'sss'): 93.3,
|
||||
('cifar100', 'tss'): 72,
|
||||
('cifar100', 'sss'): 70,
|
||||
('ImageNet16-120', 'tss'): 44,
|
||||
('ImageNet16-120', 'sss'): 46}
|
||||
|
||||
name2label = {'cifar10': 'CIFAR-10',
|
||||
'cifar100': 'CIFAR-100',
|
||||
'ImageNet16-120': 'ImageNet-16-120'}
|
||||
|
||||
def visualize_curve(api, vis_save_dir, search_space, max_time):
|
||||
vis_save_dir = vis_save_dir.resolve()
|
||||
vis_save_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
dpi, width, height = 250, 5200, 1400
|
||||
figsize = width / float(dpi), height / float(dpi)
|
||||
LabelSize, LegendFontsize = 16, 16
|
||||
|
||||
def sub_plot_fn(ax, dataset):
|
||||
alg2data = fetch_data(search_space=search_space, dataset=dataset)
|
||||
alg2accuracies = OrderedDict()
|
||||
total_tickets = 150
|
||||
time_tickets = [float(i) / total_tickets * max_time for i in range(total_tickets)]
|
||||
colors = ['b', 'g', 'c', 'm', 'y']
|
||||
ax.set_xlim(0, 200)
|
||||
ax.set_ylim(y_min_s[(dataset, search_space)], y_max_s[(dataset, search_space)])
|
||||
for idx, (alg, data) in enumerate(alg2data.items()):
|
||||
print('plot alg : {:}'.format(alg))
|
||||
accuracies = []
|
||||
for ticket in time_tickets:
|
||||
accuracy = query_performance(api, data, dataset, ticket)
|
||||
accuracies.append(accuracy)
|
||||
alg2accuracies[alg] = accuracies
|
||||
ax.plot([x/100 for x in time_tickets], accuracies, c=colors[idx], label='{:}'.format(alg))
|
||||
ax.set_xlabel('Estimated wall-clock time (1e2 seconds)', fontsize=LabelSize)
|
||||
ax.set_ylabel('Test accuracy on {:}'.format(name2label[dataset]), fontsize=LabelSize)
|
||||
ax.set_title('Searching results on {:}'.format(name2label[dataset]), fontsize=LabelSize+4)
|
||||
ax.legend(loc=4, fontsize=LegendFontsize)
|
||||
|
||||
fig, axs = plt.subplots(1, 3, figsize=figsize)
|
||||
datasets = ['cifar10', 'cifar100', 'ImageNet16-120']
|
||||
for dataset, ax in zip(datasets, axs):
|
||||
sub_plot_fn(ax, dataset)
|
||||
print('sub-plot {:} on {:} done.'.format(dataset, search_space))
|
||||
save_path = (vis_save_dir / '{:}-curve.png'.format(search_space)).resolve()
|
||||
fig.savefig(save_path, dpi=dpi, bbox_inches='tight', format='png')
|
||||
print ('{:} save into {:}'.format(time_string(), save_path))
|
||||
plt.close('all')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='NATS-Bench', formatter_class=argparse.ArgumentDefaultsHelpFormatter)
|
||||
parser.add_argument('--save_dir', type=str, default='output/vis-nas-bench/nas-algos', help='Folder to save checkpoints and log.')
|
||||
parser.add_argument('--search_space', type=str, choices=['tss', 'sss'], help='Choose the search space.')
|
||||
parser.add_argument('--max_time', type=float, default=20000, help='The maximum time budget.')
|
||||
args = parser.parse_args()
|
||||
|
||||
save_dir = Path(args.save_dir)
|
||||
|
||||
api = create(None, args.search_space, fast_mode=True, verbose=False)
|
||||
visualize_curve(api, save_dir, args.search_space, args.max_time)
|
@ -1,5 +1,5 @@
|
||||
#!/bin/bash
|
||||
# bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 1 -1
|
||||
# bash ./scripts-search/NASNet-space-search-by-GDAS-FRC.sh cifar10 0 -1
|
||||
echo script name: $0
|
||||
echo $# arguments
|
||||
if [ "$#" -ne 3 ] ;then
|
||||
|
@ -4,6 +4,11 @@
|
||||
##############################################################################
|
||||
# Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020.01 #
|
||||
##############################################################################
|
||||
# [saturn1] CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-topology.sh 00000-02000 200 "777 888 999"
|
||||
# [saturn1] CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-topology.sh 02000-04000 200 "777 888 999"
|
||||
# [saturn1] CUDA_VISIBLE_DEVICES=1 bash scripts/NATS-Bench/train-topology.sh 04000-06000 200 "777 888 999"
|
||||
# [saturn1] CUDA_VISIBLE_DEVICES=1 bash scripts/NATS-Bench/train-topology.sh 06000-08000 200 "777 888 999"
|
||||
#
|
||||
# CUDA_VISIBLE_DEVICES=0 bash scripts/NATS-Bench/train-topology.sh 00000-05000 12 777
|
||||
# bash ./scripts/NATS-Bench/train-topology.sh 05001-10000 12 777
|
||||
# bash ./scripts/NATS-Bench/train-topology.sh 10001-14500 12 777
|
||||
|
Loading…
Reference in New Issue
Block a user