Update typos
This commit is contained in:
		| @@ -1,13 +1,13 @@ | ||||
| ################################################## | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2020 # | ||||
| ###################################################################################### | ||||
| ########################################################################################################################################### | ||||
| # In this file, we aims to evaluate three kinds of channel searching strategies: | ||||
| # - channel-wise interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| # For simplicity, we use tas, fbv2, and tunas to refer these three strategies. Their official implementations are at the following links: | ||||
| # - TAS: https://github.com/D-X-Y/AutoDL-Projects/blob/master/docs/NeurIPS-2019-TAS.md | ||||
| # - FBV2: https://github.com/facebookresearch/mobile-vision | ||||
| # - FBNetV2: https://github.com/facebookresearch/mobile-vision | ||||
| # - TuNAS: https://github.com/google-research/google-research/tree/master/tunas | ||||
| #### | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --warmup_ratio 0.25 | ||||
| @@ -23,7 +23,7 @@ | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 --use_api 0 | ||||
| # python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tunas --arch_weight_decay 0 --rand_seed 777 | ||||
| # python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tunas --arch_weight_decay 0 --rand_seed 777 | ||||
| ###################################################################################### | ||||
| ########################################################################################################################################### | ||||
| import os, sys, time, random, argparse | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
|   | ||||
| @@ -2,7 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019.01 # | ||||
| ##################################################### | ||||
| # Here, we utilized three techniques to search for the number of channels: | ||||
| # - channel-wise interpaltion from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - channel-wise interpolation from "Network Pruning via Transformable Architecture Search, NeurIPS 2019" | ||||
| # - masking + Gumbel-Softmax from "FBNetV2: Differentiable Neural Architecture Search for Spatial and Channel Dimensions, CVPR 2020" | ||||
| # - masking + sampling from "Can Weight Sharing Outperform Random Architecture Search? An Investigation With TuNAS, CVPR 2020" | ||||
| from typing import List, Text, Any | ||||
|   | ||||
		Reference in New Issue
	
	Block a user