update README
This commit is contained in:
		| @@ -26,9 +26,10 @@ It is recommended to put these data into `$TORCH_HOME` (`~/.torch/` by default). | ||||
|  | ||||
| 1. Creating an API instance from a file: | ||||
| ``` | ||||
| from nas_102_api import NASBench102API | ||||
| api = NASBench102API('$path_to_meta_nas_bench_file') | ||||
| api = NASBench102API('NAS-Bench-102-v1_0-e61699.pth') | ||||
| from nas_102_api import NASBench102API as API | ||||
| api = API('$path_to_meta_nas_bench_file') | ||||
| api = API('NAS-Bench-102-v1_0-e61699.pth') | ||||
| api = API('{:}/{:}'.format(os.environ['TORCH_HOME'], 'NAS-Bench-102-v1_0-e61699.pth')) | ||||
| ``` | ||||
|  | ||||
| 2. Show the number of architectures `len(api)` and each architecture `api[i]`: | ||||
| @@ -45,12 +46,12 @@ api.show(1) | ||||
| api.show(2) | ||||
|  | ||||
| # show the mean loss and accuracy of an architecture | ||||
| info = api.query_meta_info_by_index(1) | ||||
| res_metrics = info.get_metrics('cifar10', 'train') | ||||
| cost_metrics = info.get_comput_costs('cifar100') | ||||
| info = api.query_meta_info_by_index(1)  # This is an instance of `ArchResults` | ||||
| res_metrics = info.get_metrics('cifar10', 'train') # This is a dict with metric names as keys | ||||
| cost_metrics = info.get_comput_costs('cifar100') # This is a dict with metric names as keys, e.g., flops, params, latency | ||||
|  | ||||
| # get the detailed information | ||||
| results = api.query_by_index(1, 'cifar100') | ||||
| results = api.query_by_index(1, 'cifar100') # a list of all trials on cifar100 | ||||
| print ('There are {:} trials for this architecture [{:}] on cifar100'.format(len(results), api[1])) | ||||
| print ('Latency : {:}'.format(results[0].get_latency())) | ||||
| print ('Train Info : {:}'.format(results[0].get_train())) | ||||
|   | ||||
| @@ -35,6 +35,8 @@ We build a new benchmark for neural architecture search, please see more details | ||||
| The benchmark data file (v1.0) is `NAS-Bench-102-v1_0-e61699.pth`, which can be downloaded from [Google Drive](https://drive.google.com/open?id=1SKW0Cu0u8-gb18zDpaAGi0f74UdXeGKs). | ||||
|  | ||||
| ## [Network Pruning via Transformable Architecture Search](https://arxiv.org/abs/1905.09717) | ||||
| [](https://paperswithcode.com/sota/network-pruning-on-cifar-100?p=network-pruning-via-transformable) | ||||
|  | ||||
| In this paper, we proposed a differentiable searching strategy for transformable architectures, i.e., searching for the depth and width of a deep neural network. | ||||
| You could see the highlight of our Transformable Architecture Search (TAS) at our [project page](https://xuanyidong.com/assets/projects/NeurIPS-2019-TAS.html). | ||||
|  | ||||
|   | ||||
| @@ -2,6 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| # required to install hpbandster ################# | ||||
| # bash ./scripts-search/algos/BOHB.sh -1         # | ||||
| ################################################## | ||||
| import os, sys, time, glob, random, argparse | ||||
| import numpy as np, collections | ||||
| @@ -19,7 +20,6 @@ from utils        import get_model_infos, obtain_accuracy | ||||
| from log_utils    import AverageMeter, time_string, convert_secs2time | ||||
| from nas_102_api  import NASBench102API as API | ||||
| from models       import CellStructure, get_search_spaces | ||||
| from R_EA import train_and_eval | ||||
| # BOHB: Robust and Efficient Hyperparameter Optimization at Scale, ICML 2018 | ||||
| import ConfigSpace | ||||
| from hpbandster.optimizers.bohb import BOHB | ||||
| @@ -53,21 +53,44 @@ def config2structure_func(max_nodes): | ||||
|  | ||||
| class MyWorker(Worker): | ||||
|  | ||||
|   def __init__(self, *args, sleep_interval=0, convert_func=None, nas_bench=None, **kwargs): | ||||
|   def __init__(self, *args, convert_func=None, nas_bench=None, time_scale=None, **kwargs): | ||||
|     super().__init__(*args, **kwargs) | ||||
|     self.sleep_interval = sleep_interval | ||||
|     self.convert_func   = convert_func | ||||
|     self.nas_bench      = nas_bench | ||||
|     self.test_time      = 0 | ||||
|     self.time_scale     = time_scale | ||||
|     self.seen_arch      = 0 | ||||
|     self.sim_cost_time  = 0 | ||||
|     self.real_cost_time = 0 | ||||
|  | ||||
|   def compute(self, config, budget, **kwargs): | ||||
|     structure = self.convert_func( config ) | ||||
|     reward, time_cost = train_and_eval(structure, self.nas_bench, None) | ||||
|     import pdb; pdb.set_trace() | ||||
|     self.test_time += 1 | ||||
|     start_time = time.time() | ||||
|     structure  = self.convert_func( config ) | ||||
|     arch_index = self.nas_bench.query_index_by_arch( structure ) | ||||
|     iepoch     = 0 | ||||
|     while iepoch < 12: | ||||
|       info     = self.nas_bench.get_more_info(arch_index, 'cifar10-valid', iepoch, True) | ||||
|       cur_time = info['train-all-time'] + info['valid-per-time'] | ||||
|       cur_vacc = info['valid-accuracy'] | ||||
|       if time.time() - start_time + cur_time / self.time_scale > budget: | ||||
|         break | ||||
|       else: | ||||
|         iepoch += 1 | ||||
|     self.sim_cost_time += cur_time | ||||
|     self.seen_arch += 1 | ||||
|     remaining_time = cur_time / self.time_scale - (time.time() - start_time) | ||||
|     if remaining_time > 0: | ||||
|       time.sleep(remaining_time) | ||||
|     else: | ||||
|       import pdb; pdb.set_trace() | ||||
|     self.real_cost_time += (time.time() - start_time) | ||||
|     return ({ | ||||
|             'loss': float(100-reward), | ||||
|             'info': time_cost}) | ||||
|             'loss': 100 - float(cur_vacc), | ||||
|             'info': {'seen-arch'     : self.seen_arch, | ||||
|                      'sim-test-time' : self.sim_cost_time, | ||||
|                      'real-test-time': self.real_cost_time, | ||||
|                      'current-arch'  : arch_index, | ||||
|                      'current-budget': budget} | ||||
|             }) | ||||
|  | ||||
|  | ||||
| def main(xargs, nas_bench): | ||||
| @@ -116,26 +139,30 @@ def main(xargs, nas_bench): | ||||
|   #logger.log('{:} Create NAS-BENCH-API DONE'.format(time_string())) | ||||
|   workers = [] | ||||
|   for i in range(num_workers): | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, run_id=hb_run_id, id=i) | ||||
|     w = MyWorker(nameserver=ns_host, nameserver_port=ns_port, convert_func=config2structure, nas_bench=nas_bench, time_scale=xargs.time_scale, run_id=hb_run_id, id=i) | ||||
|     w.run(background=True) | ||||
|     workers.append(w) | ||||
|  | ||||
|   simulate_time_budge = xargs.time_budget // xargs.time_scale | ||||
|   start_time = time.time() | ||||
|   logger.log('simulate_time_budge : {:} (in seconds).'.format(simulate_time_budge)) | ||||
|   bohb = BOHB(configspace=cs, | ||||
|             run_id=hb_run_id, | ||||
|             eta=3, min_budget=3, max_budget=xargs.time_budget, | ||||
|             eta=3, min_budget=simulate_time_budge//3, max_budget=simulate_time_budge, | ||||
|             nameserver=ns_host, | ||||
|             nameserver_port=ns_port, | ||||
|             num_samples=xargs.num_samples, | ||||
|             random_fraction=xargs.random_fraction, bandwidth_factor=xargs.bandwidth_factor, | ||||
|             ping_interval=10, min_bandwidth=xargs.min_bandwidth) | ||||
|   #          optimization_strategy=xargs.strategy, num_samples=xargs.num_samples, | ||||
|    | ||||
|   results = bohb.run(xargs.n_iters, min_n_workers=num_workers) | ||||
|   import pdb; pdb.set_trace() | ||||
|  | ||||
|   bohb.shutdown(shutdown_workers=True) | ||||
|   NS.shutdown() | ||||
|  | ||||
|   real_cost_time = time.time() - start_time | ||||
|   import pdb; pdb.set_trace() | ||||
|  | ||||
|   id2config = results.get_id2config_mapping() | ||||
|   incumbent = results.get_incumbent_id() | ||||
|  | ||||
| @@ -163,6 +190,7 @@ if __name__ == '__main__': | ||||
|   parser.add_argument('--channel',            type=int,   help='The number of channels.') | ||||
|   parser.add_argument('--num_cells',          type=int,   help='The number of cells in one stage.') | ||||
|   parser.add_argument('--time_budget',        type=int,   help='The total time cost budge for searching (in seconds).') | ||||
|   parser.add_argument('--time_scale' ,        type=int,   help='The time scale to accelerate the time budget.') | ||||
|   # BOHB | ||||
|   parser.add_argument('--strategy', default="sampling", type=str, nargs='?', help='optimization strategy for the acquisition function') | ||||
|   parser.add_argument('--min_bandwidth',    default=.3, type=float, nargs='?', help='minimum bandwidth for KDE') | ||||
|   | ||||
| @@ -59,7 +59,7 @@ def train_and_eval(arch, nas_bench, extra_info): | ||||
|   if nas_bench is not None: | ||||
|     arch_index = nas_bench.query_index_by_arch( arch ) | ||||
|     assert arch_index >= 0, 'can not find this arch : {:}'.format(arch) | ||||
|     info = nas_bench.get_more_info(arch_index, 'cifar10-valid', True) | ||||
|     info = nas_bench.get_more_info(arch_index, 'cifar10-valid', None, True) | ||||
|     valid_acc, time_cost = info['valid-accuracy'], info['train-all-time'] + info['valid-per-time'] | ||||
|     #_, valid_acc = info.get_metrics('cifar10-valid', 'x-valid' , 25, True) # use the validation accuracy after 25 training epochs | ||||
|   else: | ||||
|   | ||||
| @@ -147,14 +147,14 @@ class NASBench102API(object): | ||||
|     archresult = arch2infos[index] | ||||
|     return archresult.get_net_param(dataset, seed) | ||||
|  | ||||
|   def get_more_info(self, index, dataset, use_12epochs_result=False): | ||||
|   def get_more_info(self, index, dataset, iepoch=None, use_12epochs_result=False): | ||||
|     if use_12epochs_result: basestr, arch2infos = '12epochs' , self.arch2infos_less | ||||
|     else                  : basestr, arch2infos = '200epochs', self.arch2infos_full | ||||
|     archresult = arch2infos[index] | ||||
|     if dataset == 'cifar10-valid': | ||||
|       train_info = archresult.get_metrics(dataset, 'train', is_random=True) | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid', is_random=True) | ||||
|       test__info = archresult.get_metrics(dataset, 'ori-test', is_random=True) | ||||
|       train_info = archresult.get_metrics(dataset, 'train'   , iepoch=iepoch, is_random=True) | ||||
|       valid_info = archresult.get_metrics(dataset, 'x-valid' , iepoch=iepoch, is_random=True) | ||||
|       test__info = archresult.get_metrics(dataset, 'ori-test', iepoch=iepoch, is_random=True) | ||||
|       total      = train_info['iepoch'] + 1 | ||||
|       return {'train-loss'    : train_info['loss'], | ||||
|               'train-accuracy': train_info['accuracy'], | ||||
|   | ||||
| @@ -34,6 +34,6 @@ OMP_NUM_THREADS=4 python ./exps/algos/BOHB.py \ | ||||
| 	--dataset ${dataset} --data_path ${data_path} \ | ||||
| 	--search_space_name ${space} \ | ||||
| 	--arch_nas_dataset ${TORCH_HOME}/NAS-Bench-102-v1_0-e61699.pth \ | ||||
| 	--time_budget 12000 \ | ||||
| 	--n_iters 100 --num_samples 4 --random_fraction 0 \ | ||||
| 	--time_budget 12000 --time_scale 200 \ | ||||
| 	--n_iters 64 --num_samples 4 --random_fraction 0 \ | ||||
| 	--workers 4 --print_freq 200 --rand_seed ${seed} | ||||
|   | ||||
		Reference in New Issue
	
	Block a user