update TF
This commit is contained in:
		
							
								
								
									
										206
									
								
								exps-tf/one-shot-nas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										206
									
								
								exps-tf/one-shot-nas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,206 @@ | ||||
| # [D-X-Y] | ||||
| # Run DARTS | ||||
| # CUDA_VISIBLE_DEVICES=0 python exps-tf/one-shot-nas.py --epochs 50 | ||||
| # | ||||
| import os, sys, math, time, random, argparse | ||||
| import tensorflow as tf | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() | ||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
| # self-lib | ||||
| from tf_models import get_cell_based_tiny_net | ||||
| from tf_optimizers import SGDW, AdamW | ||||
| from config_utils import dict2config | ||||
| from log_utils import time_string | ||||
| from models import CellStructure | ||||
|  | ||||
|  | ||||
| def pre_process(image_a, label_a, image_b, label_b): | ||||
|   def standard_func(image): | ||||
|     x = tf.pad(image, [[4, 4], [4, 4], [0, 0]]) | ||||
|     x = tf.image.random_crop(x, [32, 32, 3]) | ||||
|     x = tf.image.random_flip_left_right(x) | ||||
|     return x | ||||
|   return standard_func(image_a), label_a, standard_func(image_b), label_b | ||||
|  | ||||
|  | ||||
| class CosineAnnealingLR(object): | ||||
|   def __init__(self, warmup_epochs, epochs, initial_lr, min_lr): | ||||
|     self.warmup_epochs = warmup_epochs | ||||
|     self.epochs = epochs | ||||
|     self.initial_lr = initial_lr | ||||
|     self.min_lr = min_lr | ||||
|  | ||||
|   def get_lr(self, epoch): | ||||
|     if epoch < self.warmup_epochs: | ||||
|       lr = self.min_lr + (epoch/self.warmup_epochs) * (self.initial_lr-self.min_lr) | ||||
|     elif epoch >= self.epochs: | ||||
|       lr = self.min_lr | ||||
|     else: | ||||
|       lr = self.min_lr + (self.initial_lr-self.min_lr) * 0.5 * (1 + math.cos(math.pi * epoch / self.epochs)) | ||||
|     return lr | ||||
|        | ||||
|  | ||||
|  | ||||
| def main(xargs): | ||||
|   cifar10 = tf.keras.datasets.cifar10 | ||||
|  | ||||
|   (x_train, y_train), (x_test, y_test) = cifar10.load_data() | ||||
|   x_train, x_test = x_train / 255.0, x_test / 255.0 | ||||
|   x_train, x_test = x_train.astype('float32'), x_test.astype('float32') | ||||
|   y_train, y_test = y_train.reshape(-1), y_test.reshape(-1) | ||||
|  | ||||
|   # Add a channels dimension | ||||
|   all_indexes = list(range(x_train.shape[0])) | ||||
|   random.shuffle(all_indexes) | ||||
|   s_train_idxs, s_valid_idxs = all_indexes[::2], all_indexes[1::2] | ||||
|   search_train_x, search_train_y = x_train[s_train_idxs], y_train[s_train_idxs] | ||||
|   search_valid_x, search_valid_y = x_train[s_valid_idxs], y_train[s_valid_idxs] | ||||
|   #x_train, x_test = x_train[..., tf.newaxis], x_test[..., tf.newaxis] | ||||
|    | ||||
|   # Use tf.data | ||||
|   #train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(64) | ||||
|   search_ds = tf.data.Dataset.from_tensor_slices((search_train_x, search_train_y, search_valid_x, search_valid_y)) | ||||
|   search_ds = search_ds.map(pre_process).shuffle(1000).batch(64) | ||||
|  | ||||
|   test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) | ||||
|  | ||||
|   # Create an instance of the model | ||||
|   config = dict2config({'name': 'DARTS', | ||||
|                         'C'   : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, | ||||
|                         'num_classes': 10, 'space': 'nas-bench-201', 'affine': True}, None) | ||||
|   model = get_cell_based_tiny_net(config) | ||||
|   num_iters_per_epoch = int(tf.data.experimental.cardinality(search_ds).numpy()) | ||||
|   #lr_schedular = tf.keras.experimental.CosineDecay(xargs.w_lr_max, num_iters_per_epoch*xargs.epochs, xargs.w_lr_min / xargs.w_lr_max) | ||||
|   lr_schedular = CosineAnnealingLR(0, xargs.epochs, xargs.w_lr_max, xargs.w_lr_min) | ||||
|   # Choose optimizer | ||||
|   loss_object = tf.keras.losses.CategoricalCrossentropy() | ||||
|   w_optimizer = SGDW(learning_rate=xargs.w_lr_max, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) | ||||
|   a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) | ||||
|   #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||
|   #### | ||||
|   # metrics | ||||
|   train_loss = tf.keras.metrics.Mean(name='train_loss') | ||||
|   train_accuracy = tf.keras.metrics.CategoricalAccuracy(name='train_accuracy') | ||||
|   valid_loss = tf.keras.metrics.Mean(name='valid_loss') | ||||
|   valid_accuracy = tf.keras.metrics.CategoricalAccuracy(name='valid_accuracy') | ||||
|   test_loss = tf.keras.metrics.Mean(name='test_loss') | ||||
|   test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') | ||||
|    | ||||
|   @tf.function | ||||
|   def search_step(train_images, train_labels, valid_images, valid_labels): | ||||
|     # optimize weights | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(train_images, True) | ||||
|       w_loss = loss_object(train_labels, predictions) | ||||
|     net_w_param = model.get_weights() | ||||
|     gradients = tape.gradient(w_loss, net_w_param) | ||||
|     w_optimizer.apply_gradients(zip(gradients, net_w_param)) | ||||
|     train_loss(w_loss) | ||||
|     train_accuracy(train_labels, predictions) | ||||
|     # optimize alphas | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(valid_images, True) | ||||
|       a_loss = loss_object(valid_labels, predictions) | ||||
|     net_a_param = model.get_alphas() | ||||
|     gradients = tape.gradient(a_loss, net_a_param) | ||||
|     a_optimizer.apply_gradients(zip(gradients, net_a_param)) | ||||
|     valid_loss(a_loss) | ||||
|     valid_accuracy(valid_labels, predictions) | ||||
|  | ||||
|   # IFT with Neumann approximation | ||||
|   @tf.function | ||||
|   def search_step_IFTNA(train_images, train_labels, valid_images, valid_labels, max_step): | ||||
|     # optimize weights | ||||
|     with tf.GradientTape() as tape: | ||||
|       predictions = model(train_images, True) | ||||
|       w_loss = loss_object(train_labels, predictions) | ||||
|     # get the weights | ||||
|     net_w_param = model.get_weights() | ||||
|     net_a_param = model.get_alphas() | ||||
|     gradients = tape.gradient(w_loss, net_w_param) | ||||
|     w_optimizer.apply_gradients(zip(gradients, net_w_param)) | ||||
|     train_loss(w_loss) | ||||
|     train_accuracy(train_labels, predictions) | ||||
|     # optimize alphas | ||||
|     with tf.GradientTape(persistent=True) as tape: | ||||
|       predictions = model(valid_images, True) | ||||
|       val_loss = loss_object(valid_labels, predictions) | ||||
|       predictions = model(train_images, True) | ||||
|       trn_loss = loss_object(train_labels, predictions) | ||||
|       # ---- | ||||
|       dV_dW = tape.gradient(val_loss, net_w_param) | ||||
|       # approxInverseHVP to calculate v2 | ||||
|       sum_p = v1 = dV_dW | ||||
|       dT_dW = tape.gradient(trn_loss, net_w_param) | ||||
|       for j in range(1, max_step): | ||||
|         temp_dot = tape.gradient(dT_dW, net_w_param, output_gradients=v1) | ||||
|         v1 = [tf.subtract(A, B) for A, B in zip(v1, temp_dot)] | ||||
|         sum_p = [tf.add(A, B) for A, B in zip(sum_p, v1)] | ||||
|       # calculate v3 | ||||
|       dT_dl = tape.gradient(trn_loss, net_a_param) | ||||
|       import pdb; pdb.set_trace() | ||||
|       v3 = tape.gradient(dT_dl, net_w_param, output_gradients=sum_p) | ||||
|     dV_dl = tape.gradient(val_loss, net_a_param) | ||||
|     a_gradients = [tf.subtract(A, B) for A, B in zip(dV_dl, v3)] | ||||
|     import pdb; pdb.set_trace() | ||||
|     print('--') | ||||
|  | ||||
|   # TEST | ||||
|   @tf.function | ||||
|   def test_step(images, labels): | ||||
|     predictions = model(images) | ||||
|     t_loss = loss_object(labels, predictions) | ||||
|  | ||||
|     test_loss(t_loss) | ||||
|     test_accuracy(labels, predictions) | ||||
|  | ||||
|   print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, num_iters_per_epoch)) | ||||
|  | ||||
|   for epoch in range(xargs.epochs): | ||||
|     # Reset the metrics at the start of the next epoch | ||||
|     train_loss.reset_states() ; train_accuracy.reset_states() | ||||
|     test_loss.reset_states()  ; test_accuracy.reset_states() | ||||
|     cur_lr  = lr_schedular.get_lr(epoch) | ||||
|     tf.keras.backend.set_value(w_optimizer.lr, cur_lr) | ||||
|  | ||||
|     for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: | ||||
|       #search_step(trn_imgs, trn_labels, val_imgs, val_labels) | ||||
|       trn_labels, val_labels = tf.one_hot(trn_labels, 10), tf.one_hot(val_labels, 10) | ||||
|       search_step_IFTNA(trn_imgs, trn_labels, val_imgs, val_labels, 5) | ||||
|     genotype = model.genotype() | ||||
|     genotype = CellStructure(genotype) | ||||
|  | ||||
|     #for test_images, test_labels in test_ds: | ||||
|     #  test_step(test_images, test_labels) | ||||
|  | ||||
|     cur_lr = float(tf.keras.backend.get_value(w_optimizer.lr)) | ||||
|     template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | lr={:.6f}' | ||||
|     print(template.format(time_string(), epoch+1, xargs.epochs, | ||||
|                           train_loss.result(), | ||||
|                           train_accuracy.result()*100, | ||||
|                           valid_loss.result(), | ||||
|                           valid_accuracy.result()*100, | ||||
|                           cur_lr)) | ||||
|     print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   parser = argparse.ArgumentParser(description='NAS-Bench-201', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||
|   # training details | ||||
|   parser.add_argument('--epochs'            , type=int  ,   default= 250  ,   help='') | ||||
|   parser.add_argument('--w_lr_max'          , type=float,   default= 0.025,   help='') | ||||
|   parser.add_argument('--w_lr_min'          , type=float,   default= 0.001,   help='') | ||||
|   parser.add_argument('--w_weight_decay'    , type=float,   default=0.0005,   help='') | ||||
|   parser.add_argument('--w_momentum'        , type=float,   default= 0.9  ,   help='') | ||||
|   parser.add_argument('--arch_learning_rate', type=float,   default=0.0003,   help='') | ||||
|   parser.add_argument('--arch_weight_decay' , type=float,   default=0.001,    help='') | ||||
|   # marco structure | ||||
|   parser.add_argument('--channel'           , type=int  ,   default=16,       help='') | ||||
|   parser.add_argument('--num_cells'         , type=int  ,   default= 5,       help='') | ||||
|   parser.add_argument('--max_nodes'         , type=int  ,   default= 4,       help='') | ||||
|   args = parser.parse_args() | ||||
|   main( args ) | ||||
							
								
								
									
										46
									
								
								exps-tf/test-invH.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										46
									
								
								exps-tf/test-invH.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,46 @@ | ||||
| import os, sys, math, time, random, argparse | ||||
| import tensorflow as tf | ||||
| from pathlib import Path | ||||
|  | ||||
|  | ||||
| def test_a(): | ||||
|   x = tf.Variable([[1.], [2.], [4.0]]) | ||||
|   with tf.GradientTape(persistent=True) as g: | ||||
|     trn = tf.math.exp(tf.math.reduce_sum(x)) | ||||
|     val = tf.math.cos(tf.math.reduce_sum(x)) | ||||
|     dT_dx = g.gradient(trn, x) | ||||
|     dV_dx = g.gradient(val, x) | ||||
|     hess_vector = g.gradient(dT_dx, x, output_gradients=dV_dx) | ||||
|   print ('calculate ok : {:}'.format(hess_vector)) | ||||
|  | ||||
| def test_b(): | ||||
|   cce = tf.keras.losses.SparseCategoricalCrossentropy() | ||||
|   L1 = tf.convert_to_tensor([0, 1, 2]) | ||||
|   L2 = tf.convert_to_tensor([2, 0, 1]) | ||||
|   B = tf.Variable([[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]]) | ||||
|   with tf.GradientTape(persistent=True) as g: | ||||
|     trn = cce(L1, B) | ||||
|     val = cce(L2, B) | ||||
|     dT_dx = g.gradient(trn, B) | ||||
|     dV_dx = g.gradient(val, B) | ||||
|     hess_vector = g.gradient(dT_dx, B, output_gradients=dV_dx) | ||||
|   print ('calculate ok : {:}'.format(hess_vector)) | ||||
|  | ||||
| def test_c(): | ||||
|   cce = tf.keras.losses.CategoricalCrossentropy() | ||||
|   L1 = tf.convert_to_tensor([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]) | ||||
|   L2 = tf.convert_to_tensor([[0., 0., 1.], [0., 1., 0.], [1., 0., 0.]]) | ||||
|   B = tf.Variable([[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]]) | ||||
|   with tf.GradientTape(persistent=True) as g: | ||||
|     trn = cce(L1, B) | ||||
|     val = cce(L2, B) | ||||
|     dT_dx = g.gradient(trn, B) | ||||
|     dV_dx = g.gradient(val, B) | ||||
|     hess_vector = g.gradient(dT_dx, B, output_gradients=dV_dx) | ||||
|   print ('calculate ok : {:}'.format(hess_vector)) | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|   print(tf.__version__) | ||||
|   test_c() | ||||
|   #test_b() | ||||
|   #test_a() | ||||
| @@ -9,7 +9,7 @@ __all__ = ['get_cell_based_tiny_net', 'get_search_spaces'] | ||||
|  | ||||
| # the cell-based NAS models | ||||
| def get_cell_based_tiny_net(config): | ||||
|   group_names = ['GDAS'] | ||||
|   group_names = ['GDAS', 'DARTS'] | ||||
|   if config.name in group_names: | ||||
|     from .cell_searchs import nas_super_nets | ||||
|     from .cell_operations import SearchSpaceNames | ||||
|   | ||||
| @@ -2,5 +2,7 @@ | ||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||
| ################################################## | ||||
| from .search_model_gdas     import TinyNetworkGDAS | ||||
| from .search_model_darts    import TinyNetworkDARTS | ||||
|  | ||||
| nas_super_nets = {'GDAS': TinyNetworkGDAS} | ||||
| nas_super_nets = {'GDAS' : TinyNetworkGDAS, | ||||
|                   'DARTS': TinyNetworkDARTS} | ||||
|   | ||||
							
								
								
									
										83
									
								
								lib/tf_models/cell_searchs/search_model_darts.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										83
									
								
								lib/tf_models/cell_searchs/search_model_darts.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,83 @@ | ||||
| import tensorflow as tf | ||||
| import numpy as np | ||||
| from copy import deepcopy | ||||
| from ..cell_operations import ResNetBasicblock | ||||
| from .search_cells     import NAS201SearchCell as SearchCell | ||||
|  | ||||
|  | ||||
| class TinyNetworkDARTS(tf.keras.Model): | ||||
|  | ||||
|   def __init__(self, C, N, max_nodes, num_classes, search_space, affine): | ||||
|     super(TinyNetworkDARTS, self).__init__() | ||||
|     self._C        = C | ||||
|     self._layerN   = N | ||||
|     self.max_nodes = max_nodes | ||||
|     self.stem = tf.keras.Sequential([ | ||||
|                     tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False), | ||||
|                     tf.keras.layers.BatchNormalization()], name='stem') | ||||
|    | ||||
|     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||
|     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||
|  | ||||
|     C_prev, num_edge, edge2index = C, None, None | ||||
|     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||
|       cell_prefix = 'cell-{:03d}'.format(index) | ||||
|       #with tf.name_scope(cell_prefix) as scope: | ||||
|       if reduction: | ||||
|         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||
|       else: | ||||
|         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine) | ||||
|         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||
|         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||
|       C_prev = cell.out_dim | ||||
|       setattr(self, cell_prefix, cell) | ||||
|     self.num_layers = len(layer_reductions) | ||||
|     self.op_names   = deepcopy( search_space ) | ||||
|     self.edge2index = edge2index | ||||
|     self.num_edge   = num_edge | ||||
|     self.lastact    = tf.keras.Sequential([ | ||||
|                         tf.keras.layers.BatchNormalization(), | ||||
|                         tf.keras.layers.ReLU(), | ||||
|                         tf.keras.layers.GlobalAvgPool2D(), | ||||
|                         tf.keras.layers.Flatten(), | ||||
|                         tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact') | ||||
|     #self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||
|     arch_init = tf.random_normal_initializer(mean=0, stddev=0.001) | ||||
|     self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding') | ||||
|  | ||||
|   def get_alphas(self): | ||||
|     xlist = self.trainable_variables | ||||
|     return [x for x in xlist if 'arch-encoding' in x.name] | ||||
|  | ||||
|   def get_weights(self): | ||||
|     xlist = self.trainable_variables | ||||
|     return [x for x in xlist if 'arch-encoding' not in x.name] | ||||
|  | ||||
|   def get_np_alphas(self): | ||||
|     arch_nps = self.arch_parameters.numpy() | ||||
|     arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True) | ||||
|     return arch_ops | ||||
|  | ||||
|   def genotype(self): | ||||
|     genotypes, arch_nps = [], self.arch_parameters.numpy() | ||||
|     for i in range(1, self.max_nodes): | ||||
|       xlist = [] | ||||
|       for j in range(i): | ||||
|         node_str = '{:}<-{:}'.format(i, j) | ||||
|         weights = arch_nps[ self.edge2index[node_str] ] | ||||
|         op_name = self.op_names[ weights.argmax().item() ] | ||||
|         xlist.append((op_name, j)) | ||||
|       genotypes.append( tuple(xlist) ) | ||||
|     return genotypes | ||||
|  | ||||
|   def call(self, inputs, training): | ||||
|     weightss = tf.nn.softmax(self.arch_parameters, axis=1) | ||||
|     feature = self.stem(inputs, training) | ||||
|     for idx in range(self.num_layers): | ||||
|       cell = getattr(self, 'cell-{:03d}'.format(idx)) | ||||
|       if isinstance(cell, SearchCell): | ||||
|         feature = cell.call(feature, weightss, training) | ||||
|       else: | ||||
|         feature = cell(feature, training) | ||||
|     logits = self.lastact(feature, training) | ||||
|     return logits | ||||
		Reference in New Issue
	
	Block a user