Correct the codes
This commit is contained in:
		| @@ -9,6 +9,12 @@ from tqdm import tqdm | ||||
| from copy import deepcopy | ||||
| from pathlib import Path | ||||
|  | ||||
| lib_dir = (Path(__file__).parent / ".." / "..").resolve() | ||||
| print("LIB-DIR: {:}".format(lib_dir)) | ||||
| if str(lib_dir) not in sys.path: | ||||
|     sys.path.insert(0, str(lib_dir)) | ||||
|  | ||||
|  | ||||
| from xautodl.procedures import ( | ||||
|     prepare_seed, | ||||
|     prepare_logger, | ||||
| @@ -38,28 +44,30 @@ def subsample(historical_x, historical_y, maxn=10000): | ||||
|  | ||||
|  | ||||
| def main(args): | ||||
|     logger, env_info, model_kwargs = lfna_setup(args) | ||||
|     logger, model_kwargs = lfna_setup(args) | ||||
|  | ||||
|     w_container_per_epoch = dict() | ||||
|     env = get_synthetic_env(mode=None, version=args.env_version) | ||||
|     logger.log("The total enviornment: {:}".format(env)) | ||||
|     w_containers = dict() | ||||
|  | ||||
|     per_timestamp_time, start_time = AverageMeter(), time.time() | ||||
|     for idx in range(1, env_info["total"]): | ||||
|     for idx, (future_time, (future_x, future_y)) in enumerate(env): | ||||
|  | ||||
|         need_time = "Time Left: {:}".format( | ||||
|             convert_secs2time(per_timestamp_time.avg * (env_info["total"] - idx), True) | ||||
|             convert_secs2time(per_timestamp_time.avg * (len(env) - idx), True) | ||||
|         ) | ||||
|         logger.log( | ||||
|             "[{:}]".format(time_string()) | ||||
|             + " [{:04d}/{:04d}]".format(idx, env_info["total"]) | ||||
|             + " [{:04d}/{:04d}]".format(idx, len(env)) | ||||
|             + " " | ||||
|             + need_time | ||||
|         ) | ||||
|         # train the same data | ||||
|         historical_x = env_info["{:}-x".format(idx)] | ||||
|         historical_y = env_info["{:}-y".format(idx)] | ||||
|         historical_x = future_x.to(args.device) | ||||
|         historical_y = future_y.to(args.device) | ||||
|         # build model | ||||
|         model = get_model(**model_kwargs) | ||||
|         print(model) | ||||
|         model = model.to(args.device) | ||||
|         # build optimizer | ||||
|         optimizer = torch.optim.Adam(model.parameters(), lr=args.init_lr, amsgrad=True) | ||||
|         criterion = torch.nn.MSELoss() | ||||
| @@ -93,7 +101,7 @@ def main(args): | ||||
|  | ||||
|         metric = ComposeMetric(MSEMetric(), SaveMetric()) | ||||
|         eval_dataset = torch.utils.data.TensorDataset( | ||||
|             env_info["{:}-x".format(idx)], env_info["{:}-y".format(idx)] | ||||
|             future_x.to(args.device), future_y.to(args.device) | ||||
|         ) | ||||
|         eval_loader = torch.utils.data.DataLoader( | ||||
|             eval_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0 | ||||
| @@ -101,23 +109,21 @@ def main(args): | ||||
|         results = basic_eval_fn(eval_loader, model, metric, logger) | ||||
|         log_str = ( | ||||
|             "[{:}]".format(time_string()) | ||||
|             + " [{:04d}/{:04d}]".format(idx, env_info["total"]) | ||||
|             + " [{:04d}/{:04d}]".format(idx, len(env)) | ||||
|             + " train-mse: {:.5f}, eval-mse: {:.5f}".format( | ||||
|                 train_results["mse"], results["mse"] | ||||
|             ) | ||||
|         ) | ||||
|         logger.log(log_str) | ||||
|  | ||||
|         save_path = logger.path(None) / "{:04d}-{:04d}.pth".format( | ||||
|             idx, env_info["total"] | ||||
|         ) | ||||
|         w_container_per_epoch[idx] = model.get_w_container().no_grad_clone() | ||||
|         save_path = logger.path(None) / "{:04d}-{:04d}.pth".format(idx, len(env)) | ||||
|         w_containers[idx] = model.get_w_container().no_grad_clone() | ||||
|         save_checkpoint( | ||||
|             { | ||||
|                 "model_state_dict": model.state_dict(), | ||||
|                 "model": model, | ||||
|                 "index": idx, | ||||
|                 "timestamp": env_info["{:}-timestamp".format(idx)], | ||||
|                 "timestamp": future_time.item(), | ||||
|             }, | ||||
|             save_path, | ||||
|             logger, | ||||
| @@ -127,7 +133,7 @@ def main(args): | ||||
|         start_time = time.time() | ||||
|  | ||||
|     save_checkpoint( | ||||
|         {"w_container_per_epoch": w_container_per_epoch}, | ||||
|         {"w_containers": w_containers}, | ||||
|         logger.path(None) / "final-ckp.pth", | ||||
|         logger, | ||||
|     ) | ||||
| @@ -174,6 +180,12 @@ if __name__ == "__main__": | ||||
|         default=300, | ||||
|         help="The total number of epochs.", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--device", | ||||
|         type=str, | ||||
|         default="cpu", | ||||
|         help="", | ||||
|     ) | ||||
|     parser.add_argument( | ||||
|         "--workers", | ||||
|         type=int, | ||||
|   | ||||
| @@ -225,9 +225,11 @@ def main(args): | ||||
|     logger, model_kwargs = lfna_setup(args) | ||||
|     train_env = get_synthetic_env(mode="train", version=args.env_version) | ||||
|     valid_env = get_synthetic_env(mode="valid", version=args.env_version) | ||||
|     trainval_env = get_synthetic_env(mode="trainval", version=args.env_version) | ||||
|     all_env = get_synthetic_env(mode=None, version=args.env_version) | ||||
|     logger.log("The training enviornment: {:}".format(train_env)) | ||||
|     logger.log("The validation enviornment: {:}".format(valid_env)) | ||||
|     logger.log("The trainval enviornment: {:}".format(trainval_env)) | ||||
|     logger.log("The total enviornment: {:}".format(all_env)) | ||||
|  | ||||
|     base_model = get_model(**model_kwargs) | ||||
| @@ -237,14 +239,14 @@ def main(args): | ||||
|     shape_container = base_model.get_w_container().to_shape_container() | ||||
|  | ||||
|     # pre-train the hypernetwork | ||||
|     timestamps = train_env.get_timestamp(None) | ||||
|     timestamps = trainval_env.get_timestamp(None) | ||||
|     meta_model = LFNA_Meta( | ||||
|         shape_container, | ||||
|         args.layer_dim, | ||||
|         args.time_dim, | ||||
|         timestamps, | ||||
|         seq_length=args.seq_length, | ||||
|         interval=train_env.time_interval, | ||||
|         interval=trainval_env.time_interval, | ||||
|     ) | ||||
|     meta_model = meta_model.to(args.device) | ||||
|  | ||||
| @@ -253,8 +255,7 @@ def main(args): | ||||
|     logger.log("The base-model is\n{:}".format(base_model)) | ||||
|     logger.log("The meta-model is\n{:}".format(meta_model)) | ||||
|  | ||||
|     # batch_sampler = EnvSampler(train_env, args.meta_batch, args.sampler_enlarge) | ||||
|     pretrain_v2(base_model, meta_model, criterion, train_env, args, logger) | ||||
|     pretrain_v2(base_model, meta_model, criterion, trainval_env, args, logger) | ||||
|  | ||||
|     # try to evaluate once | ||||
|     # online_evaluate(train_env, meta_model, base_model, criterion, args, logger) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user