Update q-config and black for procedures/utils
This commit is contained in:
		| @@ -147,5 +147,8 @@ If you find that this project helps your research, please consider citing the re | |||||||
| If you want to contribute to this repo, please see [CONTRIBUTING.md](.github/CONTRIBUTING.md). | If you want to contribute to this repo, please see [CONTRIBUTING.md](.github/CONTRIBUTING.md). | ||||||
| Besides, please follow [CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md). | Besides, please follow [CODE-OF-CONDUCT.md](.github/CODE-OF-CONDUCT.md). | ||||||
|  |  | ||||||
|  | We use `[black](https://github.com/psf/black)` for Python code formatter. | ||||||
|  | Please use `black . -l 120`. | ||||||
|  |  | ||||||
| # License | # License | ||||||
| The entire codebase is under the [MIT license](LICENSE.md). | The entire codebase is under the [MIT license](LICENSE.md). | ||||||
|   | |||||||
							
								
								
									
										82
									
								
								configs/qlib/workflow_config_mlp_Alpha360.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										82
									
								
								configs/qlib/workflow_config_mlp_Alpha360.yaml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,82 @@ | |||||||
|  | qlib_init: | ||||||
|  |     provider_uri: "~/.qlib/qlib_data/cn_data" | ||||||
|  |     region: cn | ||||||
|  | market: &market all | ||||||
|  | benchmark: &benchmark SH000300 | ||||||
|  | data_handler_config: &data_handler_config | ||||||
|  |     start_time: 2008-01-01 | ||||||
|  |     end_time: 2020-08-01 | ||||||
|  |     fit_start_time: 2008-01-01 | ||||||
|  |     fit_end_time: 2014-12-31 | ||||||
|  |     instruments: *market | ||||||
|  |     infer_processors: | ||||||
|  |         - class: RobustZScoreNorm | ||||||
|  |           kwargs: | ||||||
|  |               fields_group: feature | ||||||
|  |               clip_outlier: true | ||||||
|  |         - class: Fillna | ||||||
|  |           kwargs: | ||||||
|  |               fields_group: feature | ||||||
|  |     learn_processors: | ||||||
|  |         - class: DropnaLabel | ||||||
|  |         - class: CSRankNorm | ||||||
|  |           kwargs: | ||||||
|  |               fields_group: label | ||||||
|  |     label: ["Ref($close, -2) / Ref($close, -1) - 1"] | ||||||
|  |  | ||||||
|  | port_analysis_config: &port_analysis_config | ||||||
|  |     strategy: | ||||||
|  |         class: TopkDropoutStrategy | ||||||
|  |         module_path: qlib.contrib.strategy.strategy | ||||||
|  |         kwargs: | ||||||
|  |             topk: 50 | ||||||
|  |             n_drop: 5 | ||||||
|  |     backtest: | ||||||
|  |         verbose: False | ||||||
|  |         limit_threshold: 0.095 | ||||||
|  |         account: 100000000 | ||||||
|  |         benchmark: *benchmark | ||||||
|  |         deal_price: close | ||||||
|  |         open_cost: 0.0005 | ||||||
|  |         close_cost: 0.0015 | ||||||
|  |         min_cost: 5 | ||||||
|  | task: | ||||||
|  |     model: | ||||||
|  |         class: DNNModelPytorch | ||||||
|  |         module_path: qlib.contrib.model.pytorch_nn | ||||||
|  |         kwargs: | ||||||
|  |             loss: mse | ||||||
|  |             input_dim: 360 | ||||||
|  |             output_dim: 1 | ||||||
|  |             lr: 0.002 | ||||||
|  |             lr_decay: 0.96 | ||||||
|  |             lr_decay_steps: 100 | ||||||
|  |             optimizer: adam | ||||||
|  |             max_steps: 8000 | ||||||
|  |             batch_size: 4096 | ||||||
|  |             GPU: 0 | ||||||
|  |     dataset: | ||||||
|  |         class: DatasetH | ||||||
|  |         module_path: qlib.data.dataset | ||||||
|  |         kwargs: | ||||||
|  |             handler: | ||||||
|  |                 class: Alpha360 | ||||||
|  |                 module_path: qlib.contrib.data.handler | ||||||
|  |                 kwargs: *data_handler_config | ||||||
|  |             segments: | ||||||
|  |                 train: [2008-01-01, 2014-12-31] | ||||||
|  |                 valid: [2015-01-01, 2016-12-31] | ||||||
|  |                 test: [2017-01-01, 2020-08-01] | ||||||
|  |     record:  | ||||||
|  |         - class: SignalRecord | ||||||
|  |           module_path: qlib.workflow.record_temp | ||||||
|  |           kwargs: {} | ||||||
|  |         - class: SigAnaRecord | ||||||
|  |           module_path: qlib.workflow.record_temp | ||||||
|  |           kwargs:  | ||||||
|  |             ana_long_short: False | ||||||
|  |             ann_scaler: 252 | ||||||
|  |         - class: PortAnaRecord | ||||||
|  |           module_path: qlib.workflow.record_temp | ||||||
|  |           kwargs:  | ||||||
|  |             config: *port_analysis_config | ||||||
							
								
								
									
										85
									
								
								configs/qlib/workflow_config_sfm_Alpha360.yaml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										85
									
								
								configs/qlib/workflow_config_sfm_Alpha360.yaml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,85 @@ | |||||||
|  | qlib_init: | ||||||
|  |     provider_uri: "~/.qlib/qlib_data/cn_data" | ||||||
|  |     region: cn | ||||||
|  | market: &market all | ||||||
|  | benchmark: &benchmark SH000300 | ||||||
|  | data_handler_config: &data_handler_config | ||||||
|  |     start_time: 2008-01-01 | ||||||
|  |     end_time: 2020-08-01 | ||||||
|  |     fit_start_time: 2008-01-01 | ||||||
|  |     fit_end_time: 2014-12-31 | ||||||
|  |     instruments: *market | ||||||
|  |     infer_processors: | ||||||
|  |         - class: RobustZScoreNorm | ||||||
|  |           kwargs: | ||||||
|  |               fields_group: feature | ||||||
|  |               clip_outlier: true | ||||||
|  |         - class: Fillna | ||||||
|  |           kwargs: | ||||||
|  |               fields_group: feature | ||||||
|  |     learn_processors: | ||||||
|  |         - class: DropnaLabel | ||||||
|  |         - class: CSRankNorm | ||||||
|  |           kwargs: | ||||||
|  |               fields_group: label | ||||||
|  |     label: ["Ref($close, -2) / Ref($close, -1) - 1"] | ||||||
|  | port_analysis_config: &port_analysis_config | ||||||
|  |     strategy: | ||||||
|  |         class: TopkDropoutStrategy | ||||||
|  |         module_path: qlib.contrib.strategy.strategy | ||||||
|  |         kwargs: | ||||||
|  |             topk: 50 | ||||||
|  |             n_drop: 5 | ||||||
|  |     backtest: | ||||||
|  |         verbose: False | ||||||
|  |         limit_threshold: 0.095 | ||||||
|  |         account: 100000000 | ||||||
|  |         benchmark: *benchmark | ||||||
|  |         deal_price: close | ||||||
|  |         open_cost: 0.0005 | ||||||
|  |         close_cost: 0.0015 | ||||||
|  |         min_cost: 5 | ||||||
|  | task: | ||||||
|  |     model: | ||||||
|  |         class: SFM | ||||||
|  |         module_path: qlib.contrib.model.pytorch_sfm | ||||||
|  |         kwargs: | ||||||
|  |             d_feat: 6 | ||||||
|  |             hidden_size: 64 | ||||||
|  |             output_dim: 32 | ||||||
|  |             freq_dim: 25 | ||||||
|  |             dropout_W: 0.5 | ||||||
|  |             dropout_U: 0.5 | ||||||
|  |             n_epochs: 20 | ||||||
|  |             lr: 1e-3 | ||||||
|  |             batch_size: 1600 | ||||||
|  |             early_stop: 20 | ||||||
|  |             eval_steps: 5 | ||||||
|  |             loss: mse | ||||||
|  |             optimizer: adam | ||||||
|  |             GPU: 0 | ||||||
|  |     dataset: | ||||||
|  |         class: DatasetH | ||||||
|  |         module_path: qlib.data.dataset | ||||||
|  |         kwargs: | ||||||
|  |             handler: | ||||||
|  |                 class: Alpha360 | ||||||
|  |                 module_path: qlib.contrib.data.handler | ||||||
|  |                 kwargs: *data_handler_config | ||||||
|  |             segments: | ||||||
|  |                 train: [2008-01-01, 2014-12-31] | ||||||
|  |                 valid: [2015-01-01, 2016-12-31] | ||||||
|  |                 test: [2017-01-01, 2020-08-01] | ||||||
|  |     record:  | ||||||
|  |         - class: SignalRecord | ||||||
|  |           module_path: qlib.workflow.record_temp | ||||||
|  |           kwargs: {} | ||||||
|  |         - class: SigAnaRecord | ||||||
|  |           module_path: qlib.workflow.record_temp | ||||||
|  |           kwargs:  | ||||||
|  |             ana_long_short: False | ||||||
|  |             ann_scaler: 252 | ||||||
|  |         - class: PortAnaRecord | ||||||
|  |           module_path: qlib.workflow.record_temp | ||||||
|  |           kwargs:  | ||||||
|  |             config: *port_analysis_config | ||||||
| @@ -4,6 +4,8 @@ | |||||||
| # python exps/trading/baselines.py --alg GRU | # python exps/trading/baselines.py --alg GRU | ||||||
| # python exps/trading/baselines.py --alg LSTM | # python exps/trading/baselines.py --alg LSTM | ||||||
| # python exps/trading/baselines.py --alg ALSTM | # python exps/trading/baselines.py --alg ALSTM | ||||||
|  | # python exps/trading/baselines.py --alg MLP | ||||||
|  | # python exps/trading/baselines.py --alg SFM | ||||||
| # python exps/trading/baselines.py --alg XGBoost | # python exps/trading/baselines.py --alg XGBoost | ||||||
| # python exps/trading/baselines.py --alg LightGBM | # python exps/trading/baselines.py --alg LightGBM | ||||||
| ##################################################### | ##################################################### | ||||||
| @@ -17,6 +19,10 @@ lib_dir = (Path(__file__).parent / ".." / ".." / "lib").resolve() | |||||||
| if str(lib_dir) not in sys.path: | if str(lib_dir) not in sys.path: | ||||||
|     sys.path.insert(0, str(lib_dir)) |     sys.path.insert(0, str(lib_dir)) | ||||||
|  |  | ||||||
|  | from procedures.q_exps import update_gpu | ||||||
|  | from procedures.q_exps import update_market | ||||||
|  | from procedures.q_exps import run_exp | ||||||
|  |  | ||||||
| import qlib | import qlib | ||||||
| from qlib.utils import init_instance_by_config | from qlib.utils import init_instance_by_config | ||||||
| from qlib.workflow import R | from qlib.workflow import R | ||||||
| @@ -31,15 +37,19 @@ def retrieve_configs(): | |||||||
|     alg2names = OrderedDict() |     alg2names = OrderedDict() | ||||||
|     alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml" |     alg2names["GRU"] = "workflow_config_gru_Alpha360.yaml" | ||||||
|     alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml" |     alg2names["LSTM"] = "workflow_config_lstm_Alpha360.yaml" | ||||||
|  |     alg2names["MLP"] = "workflow_config_mlp_Alpha360.yaml" | ||||||
|     # A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017 |     # A dual-stage attention-based recurrent neural network for time series prediction, IJCAI-2017 | ||||||
|     alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml" |     alg2names["ALSTM"] = "workflow_config_alstm_Alpha360.yaml" | ||||||
|     # XGBoost: A Scalable Tree Boosting System, KDD-2016 |     # XGBoost: A Scalable Tree Boosting System, KDD-2016 | ||||||
|     alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml" |     alg2names["XGBoost"] = "workflow_config_xgboost_Alpha360.yaml" | ||||||
|     # LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017 |     # LightGBM: A Highly Efficient Gradient Boosting Decision Tree, NeurIPS-2017 | ||||||
|     alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml" |     alg2names["LightGBM"] = "workflow_config_lightgbm_Alpha360.yaml" | ||||||
|  |     # State Frequency Memory (SFM): Stock Price Prediction via Discovering Multi-Frequency Trading Patterns, KDD-2017 | ||||||
|  |     alg2names["SFM"] = "workflow_config_sfm_Alpha360.yaml" | ||||||
|  |  | ||||||
|     # find the yaml paths |     # find the yaml paths | ||||||
|     alg2paths = OrderedDict() |     alg2paths = OrderedDict() | ||||||
|  |     print("Start retrieving the algorithm configurations") | ||||||
|     for idx, (alg, name) in enumerate(alg2names.items()): |     for idx, (alg, name) in enumerate(alg2names.items()): | ||||||
|         path = config_dir / name |         path = config_dir / name | ||||||
|         assert path.exists(), "{:} does not exist.".format(path) |         assert path.exists(), "{:} does not exist.".format(path) | ||||||
| @@ -48,56 +58,6 @@ def retrieve_configs(): | |||||||
|     return alg2paths |     return alg2paths | ||||||
|  |  | ||||||
|  |  | ||||||
| def update_gpu(config, gpu): |  | ||||||
|     config = config.copy() |  | ||||||
|     if "GPU" in config["task"]["model"]: |  | ||||||
|         config["task"]["model"]["GPU"] = gpu |  | ||||||
|     return config |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def update_market(config, market): |  | ||||||
|     config = config.copy() |  | ||||||
|     config["market"] = market |  | ||||||
|     config["data_handler_config"]["instruments"] = market |  | ||||||
|     return config |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def run_exp(task_config, dataset, experiment_name, recorder_name, uri): |  | ||||||
|  |  | ||||||
|     # model initiaiton |  | ||||||
|     print("") |  | ||||||
|     print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri)) |  | ||||||
|     print("dataset={:}".format(dataset)) |  | ||||||
|  |  | ||||||
|     model = init_instance_by_config(task_config["model"]) |  | ||||||
|  |  | ||||||
|     # start exp |  | ||||||
|     with R.start(experiment_name=experiment_name, recorder_name=recorder_name, uri=uri): |  | ||||||
|  |  | ||||||
|         log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name) |  | ||||||
|         set_log_basic_config(log_file) |  | ||||||
|  |  | ||||||
|         # train model |  | ||||||
|         R.log_params(**flatten_dict(task_config)) |  | ||||||
|         model.fit(dataset) |  | ||||||
|         recorder = R.get_recorder() |  | ||||||
|         R.save_objects(**{"model.pkl": model}) |  | ||||||
|  |  | ||||||
|         # generate records: prediction, backtest, and analysis |  | ||||||
|         for record in task_config["record"]: |  | ||||||
|             record = record.copy() |  | ||||||
|             if record["class"] == "SignalRecord": |  | ||||||
|                 srconf = {"model": model, "dataset": dataset, "recorder": recorder} |  | ||||||
|                 record["kwargs"].update(srconf) |  | ||||||
|                 sr = init_instance_by_config(record) |  | ||||||
|                 sr.generate() |  | ||||||
|             else: |  | ||||||
|                 rconf = {"recorder": recorder} |  | ||||||
|                 record["kwargs"].update(rconf) |  | ||||||
|                 ar = init_instance_by_config(record) |  | ||||||
|                 ar.generate() |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def main(xargs, exp_yaml): | def main(xargs, exp_yaml): | ||||||
|     assert Path(exp_yaml).exists(), "{:} does not exist.".format(exp_yaml) |     assert Path(exp_yaml).exists(), "{:} does not exist.".format(exp_yaml) | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,24 +1,35 @@ | |||||||
| ################################################## | ################################################## | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
| ################################################## | ################################################## | ||||||
| from .starts     import prepare_seed, prepare_logger, get_machine_info, save_checkpoint, copy_checkpoint | from .starts import prepare_seed | ||||||
|  | from .starts import prepare_logger | ||||||
|  | from .starts import get_machine_info | ||||||
|  | from .starts import save_checkpoint | ||||||
|  | from .starts import copy_checkpoint | ||||||
| from .optimizers import get_optim_scheduler | from .optimizers import get_optim_scheduler | ||||||
| from .funcs_nasbench import evaluate_for_seed as bench_evaluate_for_seed | from .funcs_nasbench import evaluate_for_seed as bench_evaluate_for_seed | ||||||
| from .funcs_nasbench import pure_evaluate as bench_pure_evaluate | from .funcs_nasbench import pure_evaluate as bench_pure_evaluate | ||||||
| from .funcs_nasbench import get_nas_bench_loaders | from .funcs_nasbench import get_nas_bench_loaders | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_procedures(procedure): | def get_procedures(procedure): | ||||||
|     from .basic_main import basic_train, basic_valid |     from .basic_main import basic_train, basic_valid | ||||||
|     from .search_main import search_train, search_valid |     from .search_main import search_train, search_valid | ||||||
|     from .search_main_v2 import search_train_v2 |     from .search_main_v2 import search_train_v2 | ||||||
|     from .simple_KD_main import simple_KD_train, simple_KD_valid |     from .simple_KD_main import simple_KD_train, simple_KD_valid | ||||||
|  |  | ||||||
|   train_funcs = {'basic' : basic_train, \ |     train_funcs = { | ||||||
|                  'search': search_train,'Simple-KD': simple_KD_train, \ |         "basic": basic_train, | ||||||
|                  'search-v2': search_train_v2} |         "search": search_train, | ||||||
|   valid_funcs = {'basic' : basic_valid, \ |         "Simple-KD": simple_KD_train, | ||||||
|                  'search': search_valid,'Simple-KD': simple_KD_valid, \ |         "search-v2": search_train_v2, | ||||||
|                  'search-v2': search_valid} |     } | ||||||
|  |     valid_funcs = { | ||||||
|  |         "basic": basic_valid, | ||||||
|  |         "search": search_valid, | ||||||
|  |         "Simple-KD": simple_KD_valid, | ||||||
|  |         "search-v2": search_valid, | ||||||
|  |     } | ||||||
|  |  | ||||||
|     train_func = train_funcs[procedure] |     train_func = train_funcs[procedure] | ||||||
|     valid_func = valid_funcs[procedure] |     valid_func = valid_funcs[procedure] | ||||||
|   | |||||||
| @@ -7,48 +7,63 @@ from utils     import obtain_accuracy | |||||||
|  |  | ||||||
|  |  | ||||||
| def basic_train(xloader, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger): | def basic_train(xloader, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger): | ||||||
|   loss, acc1, acc5 = procedure(xloader, network, criterion, scheduler, optimizer, 'train', optim_config, extra_info, print_freq, logger) |     loss, acc1, acc5 = procedure( | ||||||
|  |         xloader, network, criterion, scheduler, optimizer, "train", optim_config, extra_info, print_freq, logger | ||||||
|  |     ) | ||||||
|     return loss, acc1, acc5 |     return loss, acc1, acc5 | ||||||
|  |  | ||||||
|  |  | ||||||
| def basic_valid(xloader, network, criterion, optim_config, extra_info, print_freq, logger): | def basic_valid(xloader, network, criterion, optim_config, extra_info, print_freq, logger): | ||||||
|     with torch.no_grad(): |     with torch.no_grad(): | ||||||
|     loss, acc1, acc5 = procedure(xloader, network, criterion, None, None, 'valid', None, extra_info, print_freq, logger) |         loss, acc1, acc5 = procedure( | ||||||
|  |             xloader, network, criterion, None, None, "valid", None, extra_info, print_freq, logger | ||||||
|  |         ) | ||||||
|     return loss, acc1, acc5 |     return loss, acc1, acc5 | ||||||
|  |  | ||||||
|  |  | ||||||
| def procedure(xloader, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger): | def procedure(xloader, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger): | ||||||
|   data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() |     data_time, batch_time, losses, top1, top5 = ( | ||||||
|   if mode == 'train': |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |     ) | ||||||
|  |     if mode == "train": | ||||||
|         network.train() |         network.train() | ||||||
|   elif mode == 'valid': |     elif mode == "valid": | ||||||
|         network.eval() |         network.eval() | ||||||
|   else: raise ValueError("The mode is not right : {:}".format(mode)) |     else: | ||||||
|  |         raise ValueError("The mode is not right : {:}".format(mode)) | ||||||
|  |  | ||||||
|     # logger.log('[{:5s}] config ::  auxiliary={:}, message={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, network.module.get_message())) |     # logger.log('[{:5s}] config ::  auxiliary={:}, message={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, network.module.get_message())) | ||||||
|   logger.log('[{:5s}] config ::  auxiliary={:}'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1)) |     logger.log( | ||||||
|  |         "[{:5s}] config ::  auxiliary={:}".format(mode, config.auxiliary if hasattr(config, "auxiliary") else -1) | ||||||
|  |     ) | ||||||
|     end = time.time() |     end = time.time() | ||||||
|     for i, (inputs, targets) in enumerate(xloader): |     for i, (inputs, targets) in enumerate(xloader): | ||||||
|     if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader)) |         if mode == "train": | ||||||
|  |             scheduler.update(None, 1.0 * i / len(xloader)) | ||||||
|         # measure data loading time |         # measure data loading time | ||||||
|         data_time.update(time.time() - end) |         data_time.update(time.time() - end) | ||||||
|         # calculate prediction and loss |         # calculate prediction and loss | ||||||
|         targets = targets.cuda(non_blocking=True) |         targets = targets.cuda(non_blocking=True) | ||||||
|  |  | ||||||
|     if mode == 'train': optimizer.zero_grad() |         if mode == "train": | ||||||
|  |             optimizer.zero_grad() | ||||||
|  |  | ||||||
|         features, logits = network(inputs) |         features, logits = network(inputs) | ||||||
|         if isinstance(logits, list): |         if isinstance(logits, list): | ||||||
|       assert len(logits) == 2, 'logits must has {:} items instead of {:}'.format(2, len(logits)) |             assert len(logits) == 2, "logits must has {:} items instead of {:}".format(2, len(logits)) | ||||||
|             logits, logits_aux = logits |             logits, logits_aux = logits | ||||||
|         else: |         else: | ||||||
|             logits, logits_aux = logits, None |             logits, logits_aux = logits, None | ||||||
|         loss = criterion(logits, targets) |         loss = criterion(logits, targets) | ||||||
|     if config is not None and hasattr(config, 'auxiliary') and config.auxiliary > 0: |         if config is not None and hasattr(config, "auxiliary") and config.auxiliary > 0: | ||||||
|             loss_aux = criterion(logits_aux, targets) |             loss_aux = criterion(logits_aux, targets) | ||||||
|             loss += config.auxiliary * loss_aux |             loss += config.auxiliary * loss_aux | ||||||
|  |  | ||||||
|     if mode == 'train': |         if mode == "train": | ||||||
|             loss.backward() |             loss.backward() | ||||||
|             optimizer.step() |             optimizer.step() | ||||||
|  |  | ||||||
| @@ -63,13 +78,25 @@ def procedure(xloader, network, criterion, scheduler, optimizer, mode, config, e | |||||||
|         end = time.time() |         end = time.time() | ||||||
|  |  | ||||||
|         if i % print_freq == 0 or (i + 1) == len(xloader): |         if i % print_freq == 0 or (i + 1) == len(xloader): | ||||||
|       Sstr = ' {:5s} '.format(mode.upper()) + time_string() + ' [{:}][{:03d}/{:03d}]'.format(extra_info, i, len(xloader)) |             Sstr = ( | ||||||
|  |                 " {:5s} ".format(mode.upper()) | ||||||
|  |                 + time_string() | ||||||
|  |                 + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader)) | ||||||
|  |             ) | ||||||
|             if scheduler is not None: |             if scheduler is not None: | ||||||
|         Sstr += ' {:}'.format(scheduler.get_min_info()) |                 Sstr += " {:}".format(scheduler.get_min_info()) | ||||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | ||||||
|       Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5) |                 batch_time=batch_time, data_time=data_time | ||||||
|       Istr = 'Size={:}'.format(list(inputs.size())) |             ) | ||||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr) |             Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( | ||||||
|  |                 loss=losses, top1=top1, top5=top5 | ||||||
|  |             ) | ||||||
|  |             Istr = "Size={:}".format(list(inputs.size())) | ||||||
|  |             logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr) | ||||||
|  |  | ||||||
|   logger.log(' **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(mode=mode.upper(), top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg)) |     logger.log( | ||||||
|  |         " **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format( | ||||||
|  |             mode=mode.upper(), top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     return losses.avg, top1.avg, top5.avg |     return losses.avg, top1.avg, top5.avg | ||||||
|   | |||||||
| @@ -11,7 +11,7 @@ from log_utils    import AverageMeter, time_string, convert_secs2time | |||||||
| from models import get_cell_based_tiny_net | from models import get_cell_based_tiny_net | ||||||
|  |  | ||||||
|  |  | ||||||
| __all__ = ['evaluate_for_seed', 'pure_evaluate', 'get_nas_bench_loaders'] | __all__ = ["evaluate_for_seed", "pure_evaluate", "get_nas_bench_loaders"] | ||||||
|  |  | ||||||
|  |  | ||||||
| def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | ||||||
| @@ -38,28 +38,33 @@ def pure_evaluate(xloader, network, criterion=torch.nn.CrossEntropyLoss()): | |||||||
|             top1.update(prec1.item(), inputs.size(0)) |             top1.update(prec1.item(), inputs.size(0)) | ||||||
|             top5.update(prec5.item(), inputs.size(0)) |             top5.update(prec5.item(), inputs.size(0)) | ||||||
|             end = time.time() |             end = time.time() | ||||||
|   if len(latencies) > 2: latencies = latencies[1:] |     if len(latencies) > 2: | ||||||
|  |         latencies = latencies[1:] | ||||||
|     return losses.avg, top1.avg, top5.avg, latencies |     return losses.avg, top1.avg, top5.avg, latencies | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def procedure(xloader, network, criterion, scheduler, optimizer, mode: str): | def procedure(xloader, network, criterion, scheduler, optimizer, mode: str): | ||||||
|     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() |     losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter() | ||||||
|   if mode == 'train'  : network.train() |     if mode == "train": | ||||||
|   elif mode == 'valid': network.eval() |         network.train() | ||||||
|   else: raise ValueError("The mode is not right : {:}".format(mode)) |     elif mode == "valid": | ||||||
|  |         network.eval() | ||||||
|  |     else: | ||||||
|  |         raise ValueError("The mode is not right : {:}".format(mode)) | ||||||
|     device = torch.cuda.current_device() |     device = torch.cuda.current_device() | ||||||
|     data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() |     data_time, batch_time, end = AverageMeter(), AverageMeter(), time.time() | ||||||
|     for i, (inputs, targets) in enumerate(xloader): |     for i, (inputs, targets) in enumerate(xloader): | ||||||
|     if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader)) |         if mode == "train": | ||||||
|  |             scheduler.update(None, 1.0 * i / len(xloader)) | ||||||
|  |  | ||||||
|         targets = targets.cuda(device=device, non_blocking=True) |         targets = targets.cuda(device=device, non_blocking=True) | ||||||
|     if mode == 'train': optimizer.zero_grad() |         if mode == "train": | ||||||
|  |             optimizer.zero_grad() | ||||||
|         # forward |         # forward | ||||||
|         features, logits = network(inputs) |         features, logits = network(inputs) | ||||||
|         loss = criterion(logits, targets) |         loss = criterion(logits, targets) | ||||||
|         # backward |         # backward | ||||||
|     if mode == 'train': |         if mode == "train": | ||||||
|             loss.backward() |             loss.backward() | ||||||
|             optimizer.step() |             optimizer.step() | ||||||
|         # record loss and accuracy |         # record loss and accuracy | ||||||
| @@ -79,9 +84,9 @@ def evaluate_for_seed(arch_config, opt_config, train_loader, valid_loaders, seed | |||||||
|     net = get_cell_based_tiny_net(arch_config) |     net = get_cell_based_tiny_net(arch_config) | ||||||
|     # net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num) |     # net = TinyNetwork(arch_config['channel'], arch_config['num_cells'], arch, config.class_num) | ||||||
|     flop, param = get_model_infos(net, opt_config.xshape) |     flop, param = get_model_infos(net, opt_config.xshape) | ||||||
|   logger.log('Network : {:}'.format(net.get_message()), False) |     logger.log("Network : {:}".format(net.get_message()), False) | ||||||
|   logger.log('{:} Seed-------------------------- {:} --------------------------'.format(time_string(), seed)) |     logger.log("{:} Seed-------------------------- {:} --------------------------".format(time_string(), seed)) | ||||||
|   logger.log('FLOP = {:} MB, Param = {:} MB'.format(flop, param)) |     logger.log("FLOP = {:} MB, Param = {:} MB".format(flop, param)) | ||||||
|     # train and valid |     # train and valid | ||||||
|     optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), opt_config) |     optimizer, scheduler, criterion = get_optim_scheduler(net.parameters(), opt_config) | ||||||
|     default_device = torch.cuda.current_device() |     default_device = torch.cuda.current_device() | ||||||
| @@ -94,7 +99,9 @@ def evaluate_for_seed(arch_config, opt_config, train_loader, valid_loaders, seed | |||||||
|     for epoch in range(total_epoch): |     for epoch in range(total_epoch): | ||||||
|         scheduler.update(epoch, 0.0) |         scheduler.update(epoch, 0.0) | ||||||
|         lr = min(scheduler.get_lr()) |         lr = min(scheduler.get_lr()) | ||||||
|     train_loss, train_acc1, train_acc5, train_tm = procedure(train_loader, network, criterion, scheduler, optimizer, 'train') |         train_loss, train_acc1, train_acc5, train_tm = procedure( | ||||||
|  |             train_loader, network, criterion, scheduler, optimizer, "train" | ||||||
|  |         ) | ||||||
|         train_losses[epoch] = train_loss |         train_losses[epoch] = train_loss | ||||||
|         train_acc1es[epoch] = train_acc1 |         train_acc1es[epoch] = train_acc1 | ||||||
|         train_acc5es[epoch] = train_acc5 |         train_acc5es[epoch] = train_acc5 | ||||||
| @@ -102,34 +109,51 @@ def evaluate_for_seed(arch_config, opt_config, train_loader, valid_loaders, seed | |||||||
|         lrs[epoch] = lr |         lrs[epoch] = lr | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|             for key, xloder in valid_loaders.items(): |             for key, xloder in valid_loaders.items(): | ||||||
|         valid_loss, valid_acc1, valid_acc5, valid_tm = procedure(xloder  , network, criterion,      None,      None, 'valid') |                 valid_loss, valid_acc1, valid_acc5, valid_tm = procedure( | ||||||
|         valid_losses['{:}@{:}'.format(key,epoch)] = valid_loss |                     xloder, network, criterion, None, None, "valid" | ||||||
|         valid_acc1es['{:}@{:}'.format(key,epoch)] = valid_acc1  |                 ) | ||||||
|         valid_acc5es['{:}@{:}'.format(key,epoch)] = valid_acc5 |                 valid_losses["{:}@{:}".format(key, epoch)] = valid_loss | ||||||
|         valid_times ['{:}@{:}'.format(key,epoch)] = valid_tm |                 valid_acc1es["{:}@{:}".format(key, epoch)] = valid_acc1 | ||||||
|  |                 valid_acc5es["{:}@{:}".format(key, epoch)] = valid_acc5 | ||||||
|  |                 valid_times["{:}@{:}".format(key, epoch)] = valid_tm | ||||||
|  |  | ||||||
|         # measure elapsed time |         # measure elapsed time | ||||||
|         epoch_time.update(time.time() - start_time) |         epoch_time.update(time.time() - start_time) | ||||||
|         start_time = time.time() |         start_time = time.time() | ||||||
|     need_time = 'Time Left: {:}'.format( convert_secs2time(epoch_time.avg * (total_epoch-epoch-1), True) ) |         need_time = "Time Left: {:}".format(convert_secs2time(epoch_time.avg * (total_epoch - epoch - 1), True)) | ||||||
|     logger.log('{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%], lr={:}'.format(time_string(), need_time, epoch, total_epoch, train_loss, train_acc1, train_acc5, valid_loss, valid_acc1, valid_acc5, lr)) |         logger.log( | ||||||
|   info_seed = {'flop' : flop, |             "{:} {:} epoch={:03d}/{:03d} :: Train [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%] Valid [loss={:.5f}, acc@1={:.2f}%, acc@5={:.2f}%], lr={:}".format( | ||||||
|                'param': param, |                 time_string(), | ||||||
|                'arch_config' : arch_config._asdict(), |                 need_time, | ||||||
|                'opt_config'  : opt_config._asdict(), |                 epoch, | ||||||
|                'total_epoch' : total_epoch , |                 total_epoch, | ||||||
|                'train_losses': train_losses, |                 train_loss, | ||||||
|                'train_acc1es': train_acc1es, |                 train_acc1, | ||||||
|                'train_acc5es': train_acc5es, |                 train_acc5, | ||||||
|                'train_times' : train_times, |                 valid_loss, | ||||||
|                'valid_losses': valid_losses, |                 valid_acc1, | ||||||
|                'valid_acc1es': valid_acc1es, |                 valid_acc5, | ||||||
|                'valid_acc5es': valid_acc5es, |                 lr, | ||||||
|                'valid_times' : valid_times, |             ) | ||||||
|                'learning_rates': lrs, |         ) | ||||||
|                'net_state_dict': net.state_dict(), |     info_seed = { | ||||||
|                'net_string'  : '{:}'.format(net), |         "flop": flop, | ||||||
|                'finish-train': True |         "param": param, | ||||||
|  |         "arch_config": arch_config._asdict(), | ||||||
|  |         "opt_config": opt_config._asdict(), | ||||||
|  |         "total_epoch": total_epoch, | ||||||
|  |         "train_losses": train_losses, | ||||||
|  |         "train_acc1es": train_acc1es, | ||||||
|  |         "train_acc5es": train_acc5es, | ||||||
|  |         "train_times": train_times, | ||||||
|  |         "valid_losses": valid_losses, | ||||||
|  |         "valid_acc1es": valid_acc1es, | ||||||
|  |         "valid_acc5es": valid_acc5es, | ||||||
|  |         "valid_times": valid_times, | ||||||
|  |         "learning_rates": lrs, | ||||||
|  |         "net_state_dict": net.state_dict(), | ||||||
|  |         "net_string": "{:}".format(net), | ||||||
|  |         "finish-train": True, | ||||||
|     } |     } | ||||||
|     return info_seed |     return info_seed | ||||||
|  |  | ||||||
| @@ -138,66 +162,191 @@ def get_nas_bench_loaders(workers): | |||||||
|  |  | ||||||
|     torch.set_num_threads(workers) |     torch.set_num_threads(workers) | ||||||
|  |  | ||||||
|   root_dir  = (pathlib.Path(__file__).parent / '..' / '..').resolve() |     root_dir = (pathlib.Path(__file__).parent / ".." / "..").resolve() | ||||||
|   torch_dir = pathlib.Path(os.environ['TORCH_HOME']) |     torch_dir = pathlib.Path(os.environ["TORCH_HOME"]) | ||||||
|     # cifar |     # cifar | ||||||
|   cifar_config_path = root_dir / 'configs' / 'nas-benchmark' / 'CIFAR.config' |     cifar_config_path = root_dir / "configs" / "nas-benchmark" / "CIFAR.config" | ||||||
|     cifar_config = load_config(cifar_config_path, None, None) |     cifar_config = load_config(cifar_config_path, None, None) | ||||||
|     get_datasets = datasets.get_datasets  # a function to return the dataset |     get_datasets = datasets.get_datasets  # a function to return the dataset | ||||||
|   break_line = '-' * 150 |     break_line = "-" * 150 | ||||||
|   print ('{:} Create data-loader for all datasets'.format(time_string())) |     print("{:} Create data-loader for all datasets".format(time_string())) | ||||||
|     print(break_line) |     print(break_line) | ||||||
|   TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets('cifar10', str(torch_dir/'cifar.python'), -1) |     TRAIN_CIFAR10, VALID_CIFAR10, xshape, class_num = get_datasets("cifar10", str(torch_dir / "cifar.python"), -1) | ||||||
|   print ('original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num)) |     print( | ||||||
|   cifar10_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar-split.txt', None, None) |         "original CIFAR-10 : {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||||
|   assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [1, 2, 3, 4, 6, 8, 9, 10, 12, 14] |             len(TRAIN_CIFAR10), len(VALID_CIFAR10), xshape, class_num | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     cifar10_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar-split.txt", None, None) | ||||||
|  |     assert cifar10_splits.train[:10] == [0, 5, 7, 11, 13, 15, 16, 17, 20, 24] and cifar10_splits.valid[:10] == [ | ||||||
|  |         1, | ||||||
|  |         2, | ||||||
|  |         3, | ||||||
|  |         4, | ||||||
|  |         6, | ||||||
|  |         8, | ||||||
|  |         9, | ||||||
|  |         10, | ||||||
|  |         12, | ||||||
|  |         14, | ||||||
|  |     ] | ||||||
|     temp_dataset = copy.deepcopy(TRAIN_CIFAR10) |     temp_dataset = copy.deepcopy(TRAIN_CIFAR10) | ||||||
|     temp_dataset.transform = VALID_CIFAR10.transform |     temp_dataset.transform = VALID_CIFAR10.transform | ||||||
|     # data loader |     # data loader | ||||||
|   trainval_cifar10_loader = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True , num_workers=workers, pin_memory=True) |     trainval_cifar10_loader = torch.utils.data.DataLoader( | ||||||
|   train_cifar10_loader    = torch.utils.data.DataLoader(TRAIN_CIFAR10, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), num_workers=workers, pin_memory=True) |         TRAIN_CIFAR10, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||||
|   valid_cifar10_loader    = torch.utils.data.DataLoader(temp_dataset , batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), num_workers=workers, pin_memory=True) |     ) | ||||||
|   test__cifar10_loader    = torch.utils.data.DataLoader(VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True) |     train_cifar10_loader = torch.utils.data.DataLoader( | ||||||
|   print ('CIFAR-10  : trval-loader has {:3d} batch with {:} per batch'.format(len(trainval_cifar10_loader), cifar_config.batch_size)) |         TRAIN_CIFAR10, | ||||||
|   print ('CIFAR-10  : train-loader has {:3d} batch with {:} per batch'.format(len(train_cifar10_loader), cifar_config.batch_size)) |         batch_size=cifar_config.batch_size, | ||||||
|   print ('CIFAR-10  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_cifar10_loader), cifar_config.batch_size)) |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.train), | ||||||
|   print ('CIFAR-10  : test--loader has {:3d} batch with {:} per batch'.format(len(test__cifar10_loader), cifar_config.batch_size)) |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     valid_cifar10_loader = torch.utils.data.DataLoader( | ||||||
|  |         temp_dataset, | ||||||
|  |         batch_size=cifar_config.batch_size, | ||||||
|  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar10_splits.valid), | ||||||
|  |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     test__cifar10_loader = torch.utils.data.DataLoader( | ||||||
|  |         VALID_CIFAR10, batch_size=cifar_config.batch_size, shuffle=False, num_workers=workers, pin_memory=True | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "CIFAR-10  : trval-loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(trainval_cifar10_loader), cifar_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "CIFAR-10  : train-loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(train_cifar10_loader), cifar_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "CIFAR-10  : valid-loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(valid_cifar10_loader), cifar_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "CIFAR-10  : test--loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(test__cifar10_loader), cifar_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     print(break_line) |     print(break_line) | ||||||
|     # CIFAR-100 |     # CIFAR-100 | ||||||
|   TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets('cifar100', str(torch_dir/'cifar.python'), -1) |     TRAIN_CIFAR100, VALID_CIFAR100, xshape, class_num = get_datasets("cifar100", str(torch_dir / "cifar.python"), -1) | ||||||
|   print ('original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num)) |     print( | ||||||
|   cifar100_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'cifar100-test-split.txt', None, None) |         "original CIFAR-100: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||||
|   assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [0, 2, 6, 7, 9, 11, 12, 17, 20, 24] |             len(TRAIN_CIFAR100), len(VALID_CIFAR100), xshape, class_num | ||||||
|   train_cifar100_loader = torch.utils.data.DataLoader(TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) |         ) | ||||||
|   valid_cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), num_workers=workers, pin_memory=True) |     ) | ||||||
|   test__cifar100_loader = torch.utils.data.DataLoader(VALID_CIFAR100, batch_size=cifar_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest) , num_workers=workers, pin_memory=True) |     cifar100_splits = load_config(root_dir / "configs" / "nas-benchmark" / "cifar100-test-split.txt", None, None) | ||||||
|   print ('CIFAR-100  : train-loader has {:3d} batch'.format(len(train_cifar100_loader))) |     assert cifar100_splits.xvalid[:10] == [1, 3, 4, 5, 8, 10, 13, 14, 15, 16] and cifar100_splits.xtest[:10] == [ | ||||||
|   print ('CIFAR-100  : valid-loader has {:3d} batch'.format(len(valid_cifar100_loader))) |         0, | ||||||
|   print ('CIFAR-100  : test--loader has {:3d} batch'.format(len(test__cifar100_loader))) |         2, | ||||||
|  |         6, | ||||||
|  |         7, | ||||||
|  |         9, | ||||||
|  |         11, | ||||||
|  |         12, | ||||||
|  |         17, | ||||||
|  |         20, | ||||||
|  |         24, | ||||||
|  |     ] | ||||||
|  |     train_cifar100_loader = torch.utils.data.DataLoader( | ||||||
|  |         TRAIN_CIFAR100, batch_size=cifar_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True | ||||||
|  |     ) | ||||||
|  |     valid_cifar100_loader = torch.utils.data.DataLoader( | ||||||
|  |         VALID_CIFAR100, | ||||||
|  |         batch_size=cifar_config.batch_size, | ||||||
|  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xvalid), | ||||||
|  |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     test__cifar100_loader = torch.utils.data.DataLoader( | ||||||
|  |         VALID_CIFAR100, | ||||||
|  |         batch_size=cifar_config.batch_size, | ||||||
|  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(cifar100_splits.xtest), | ||||||
|  |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     print("CIFAR-100  : train-loader has {:3d} batch".format(len(train_cifar100_loader))) | ||||||
|  |     print("CIFAR-100  : valid-loader has {:3d} batch".format(len(valid_cifar100_loader))) | ||||||
|  |     print("CIFAR-100  : test--loader has {:3d} batch".format(len(test__cifar100_loader))) | ||||||
|     print(break_line) |     print(break_line) | ||||||
|  |  | ||||||
|   imagenet16_config_path = 'configs/nas-benchmark/ImageNet-16.config' |     imagenet16_config_path = "configs/nas-benchmark/ImageNet-16.config" | ||||||
|     imagenet16_config = load_config(imagenet16_config_path, None, None) |     imagenet16_config = load_config(imagenet16_config_path, None, None) | ||||||
|   TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets('ImageNet16-120', str(torch_dir/'cifar.python'/'ImageNet16'), -1) |     TRAIN_ImageNet16_120, VALID_ImageNet16_120, xshape, class_num = get_datasets( | ||||||
|   print ('original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes'.format(len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num)) |         "ImageNet16-120", str(torch_dir / "cifar.python" / "ImageNet16"), -1 | ||||||
|   imagenet_splits = load_config(root_dir / 'configs' / 'nas-benchmark' / 'imagenet-16-120-test-split.txt', None, None) |     ) | ||||||
|   assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [0, 4, 5, 10, 11, 13, 14, 15, 17, 20] |     print( | ||||||
|   train_imagenet_loader = torch.utils.data.DataLoader(TRAIN_ImageNet16_120, batch_size=imagenet16_config.batch_size, shuffle=True, num_workers=workers, pin_memory=True) |         "original TRAIN_ImageNet16_120: {:} training images and {:} test images : {:} input shape : {:} number of classes".format( | ||||||
|   valid_imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), num_workers=workers, pin_memory=True) |             len(TRAIN_ImageNet16_120), len(VALID_ImageNet16_120), xshape, class_num | ||||||
|   test__imagenet_loader = torch.utils.data.DataLoader(VALID_ImageNet16_120, batch_size=imagenet16_config.batch_size, sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest) , num_workers=workers, pin_memory=True) |         ) | ||||||
|   print ('ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch'.format(len(train_imagenet_loader), imagenet16_config.batch_size)) |     ) | ||||||
|   print ('ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch'.format(len(valid_imagenet_loader), imagenet16_config.batch_size)) |     imagenet_splits = load_config(root_dir / "configs" / "nas-benchmark" / "imagenet-16-120-test-split.txt", None, None) | ||||||
|   print ('ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch'.format(len(test__imagenet_loader), imagenet16_config.batch_size)) |     assert imagenet_splits.xvalid[:10] == [1, 2, 3, 6, 7, 8, 9, 12, 16, 18] and imagenet_splits.xtest[:10] == [ | ||||||
|  |         0, | ||||||
|  |         4, | ||||||
|  |         5, | ||||||
|  |         10, | ||||||
|  |         11, | ||||||
|  |         13, | ||||||
|  |         14, | ||||||
|  |         15, | ||||||
|  |         17, | ||||||
|  |         20, | ||||||
|  |     ] | ||||||
|  |     train_imagenet_loader = torch.utils.data.DataLoader( | ||||||
|  |         TRAIN_ImageNet16_120, | ||||||
|  |         batch_size=imagenet16_config.batch_size, | ||||||
|  |         shuffle=True, | ||||||
|  |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     valid_imagenet_loader = torch.utils.data.DataLoader( | ||||||
|  |         VALID_ImageNet16_120, | ||||||
|  |         batch_size=imagenet16_config.batch_size, | ||||||
|  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xvalid), | ||||||
|  |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     test__imagenet_loader = torch.utils.data.DataLoader( | ||||||
|  |         VALID_ImageNet16_120, | ||||||
|  |         batch_size=imagenet16_config.batch_size, | ||||||
|  |         sampler=torch.utils.data.sampler.SubsetRandomSampler(imagenet_splits.xtest), | ||||||
|  |         num_workers=workers, | ||||||
|  |         pin_memory=True, | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "ImageNet-16-120  : train-loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(train_imagenet_loader), imagenet16_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "ImageNet-16-120  : valid-loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(valid_imagenet_loader), imagenet16_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     print( | ||||||
|  |         "ImageNet-16-120  : test--loader has {:3d} batch with {:} per batch".format( | ||||||
|  |             len(test__imagenet_loader), imagenet16_config.batch_size | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     # 'cifar10', 'cifar100', 'ImageNet16-120' |     # 'cifar10', 'cifar100', 'ImageNet16-120' | ||||||
|   loaders = {'cifar10@trainval': trainval_cifar10_loader, |     loaders = { | ||||||
|              'cifar10@train'   : train_cifar10_loader, |         "cifar10@trainval": trainval_cifar10_loader, | ||||||
|              'cifar10@valid'   : valid_cifar10_loader, |         "cifar10@train": train_cifar10_loader, | ||||||
|              'cifar10@test'    : test__cifar10_loader, |         "cifar10@valid": valid_cifar10_loader, | ||||||
|              'cifar100@train'  : train_cifar100_loader, |         "cifar10@test": test__cifar10_loader, | ||||||
|              'cifar100@valid'  : valid_cifar100_loader, |         "cifar100@train": train_cifar100_loader, | ||||||
|              'cifar100@test'   : test__cifar100_loader, |         "cifar100@valid": valid_cifar100_loader, | ||||||
|              'ImageNet16-120@train': train_imagenet_loader, |         "cifar100@test": test__cifar100_loader, | ||||||
|              'ImageNet16-120@valid': valid_imagenet_loader, |         "ImageNet16-120@train": train_imagenet_loader, | ||||||
|              'ImageNet16-120@test' : test__imagenet_loader} |         "ImageNet16-120@valid": valid_imagenet_loader, | ||||||
|  |         "ImageNet16-120@test": test__imagenet_loader, | ||||||
|  |     } | ||||||
|     return loaders |     return loaders | ||||||
| @@ -8,28 +8,30 @@ from torch.optim import Optimizer | |||||||
|  |  | ||||||
|  |  | ||||||
| class _LRScheduler(object): | class _LRScheduler(object): | ||||||
|  |  | ||||||
|     def __init__(self, optimizer, warmup_epochs, epochs): |     def __init__(self, optimizer, warmup_epochs, epochs): | ||||||
|         if not isinstance(optimizer, Optimizer): |         if not isinstance(optimizer, Optimizer): | ||||||
|       raise TypeError('{:} is not an Optimizer'.format(type(optimizer).__name__)) |             raise TypeError("{:} is not an Optimizer".format(type(optimizer).__name__)) | ||||||
|         self.optimizer = optimizer |         self.optimizer = optimizer | ||||||
|         for group in optimizer.param_groups: |         for group in optimizer.param_groups: | ||||||
|       group.setdefault('initial_lr', group['lr']) |             group.setdefault("initial_lr", group["lr"]) | ||||||
|     self.base_lrs = list(map(lambda group: group['initial_lr'], optimizer.param_groups)) |         self.base_lrs = list(map(lambda group: group["initial_lr"], optimizer.param_groups)) | ||||||
|         self.max_epochs = epochs |         self.max_epochs = epochs | ||||||
|         self.warmup_epochs = warmup_epochs |         self.warmup_epochs = warmup_epochs | ||||||
|         self.current_epoch = 0 |         self.current_epoch = 0 | ||||||
|         self.current_iter = 0 |         self.current_iter = 0 | ||||||
|  |  | ||||||
|     def extra_repr(self): |     def extra_repr(self): | ||||||
|     return '' |         return "" | ||||||
|  |  | ||||||
|     def __repr__(self): |     def __repr__(self): | ||||||
|     return ('{name}(warmup={warmup_epochs}, max-epoch={max_epochs}, current::epoch={current_epoch}, iter={current_iter:.2f}'.format(name=self.__class__.__name__, **self.__dict__) |         return "{name}(warmup={warmup_epochs}, max-epoch={max_epochs}, current::epoch={current_epoch}, iter={current_iter:.2f}".format( | ||||||
|               + ', {:})'.format(self.extra_repr())) |             name=self.__class__.__name__, **self.__dict__ | ||||||
|  |         ) + ", {:})".format( | ||||||
|  |             self.extra_repr() | ||||||
|  |         ) | ||||||
|  |  | ||||||
|     def state_dict(self): |     def state_dict(self): | ||||||
|     return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} |         return {key: value for key, value in self.__dict__.items() if key != "optimizer"} | ||||||
|  |  | ||||||
|     def load_state_dict(self, state_dict): |     def load_state_dict(self, state_dict): | ||||||
|         self.__dict__.update(state_dict) |         self.__dict__.update(state_dict) | ||||||
| @@ -39,32 +41,32 @@ class _LRScheduler(object): | |||||||
|  |  | ||||||
|     def get_min_info(self): |     def get_min_info(self): | ||||||
|         lrs = self.get_lr() |         lrs = self.get_lr() | ||||||
|     return '#LR=[{:.6f}~{:.6f}] epoch={:03d}, iter={:4.2f}#'.format(min(lrs), max(lrs), self.current_epoch, self.current_iter) |         return "#LR=[{:.6f}~{:.6f}] epoch={:03d}, iter={:4.2f}#".format( | ||||||
|  |             min(lrs), max(lrs), self.current_epoch, self.current_iter | ||||||
|  |         ) | ||||||
|  |  | ||||||
|     def get_min_lr(self): |     def get_min_lr(self): | ||||||
|         return min(self.get_lr()) |         return min(self.get_lr()) | ||||||
|  |  | ||||||
|     def update(self, cur_epoch, cur_iter): |     def update(self, cur_epoch, cur_iter): | ||||||
|         if cur_epoch is not None: |         if cur_epoch is not None: | ||||||
|       assert isinstance(cur_epoch, int) and cur_epoch>=0, 'invalid cur-epoch : {:}'.format(cur_epoch) |             assert isinstance(cur_epoch, int) and cur_epoch >= 0, "invalid cur-epoch : {:}".format(cur_epoch) | ||||||
|             self.current_epoch = cur_epoch |             self.current_epoch = cur_epoch | ||||||
|         if cur_iter is not None: |         if cur_iter is not None: | ||||||
|       assert isinstance(cur_iter, float) and cur_iter>=0, 'invalid cur-iter : {:}'.format(cur_iter) |             assert isinstance(cur_iter, float) and cur_iter >= 0, "invalid cur-iter : {:}".format(cur_iter) | ||||||
|             self.current_iter = cur_iter |             self.current_iter = cur_iter | ||||||
|         for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): |         for param_group, lr in zip(self.optimizer.param_groups, self.get_lr()): | ||||||
|       param_group['lr'] = lr |             param_group["lr"] = lr | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class CosineAnnealingLR(_LRScheduler): | class CosineAnnealingLR(_LRScheduler): | ||||||
|  |  | ||||||
|     def __init__(self, optimizer, warmup_epochs, epochs, T_max, eta_min): |     def __init__(self, optimizer, warmup_epochs, epochs, T_max, eta_min): | ||||||
|         self.T_max = T_max |         self.T_max = T_max | ||||||
|         self.eta_min = eta_min |         self.eta_min = eta_min | ||||||
|         super(CosineAnnealingLR, self).__init__(optimizer, warmup_epochs, epochs) |         super(CosineAnnealingLR, self).__init__(optimizer, warmup_epochs, epochs) | ||||||
|  |  | ||||||
|     def extra_repr(self): |     def extra_repr(self): | ||||||
|     return 'type={:}, T-max={:}, eta-min={:}'.format('cosine', self.T_max, self.eta_min) |         return "type={:}, T-max={:}, eta-min={:}".format("cosine", self.T_max, self.eta_min) | ||||||
|  |  | ||||||
|     def get_lr(self): |     def get_lr(self): | ||||||
|         lrs = [] |         lrs = [] | ||||||
| @@ -84,17 +86,17 @@ class CosineAnnealingLR(_LRScheduler): | |||||||
|         return lrs |         return lrs | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class MultiStepLR(_LRScheduler): | class MultiStepLR(_LRScheduler): | ||||||
|  |  | ||||||
|     def __init__(self, optimizer, warmup_epochs, epochs, milestones, gammas): |     def __init__(self, optimizer, warmup_epochs, epochs, milestones, gammas): | ||||||
|     assert len(milestones) == len(gammas), 'invalid {:} vs {:}'.format(len(milestones), len(gammas)) |         assert len(milestones) == len(gammas), "invalid {:} vs {:}".format(len(milestones), len(gammas)) | ||||||
|         self.milestones = milestones |         self.milestones = milestones | ||||||
|         self.gammas = gammas |         self.gammas = gammas | ||||||
|         super(MultiStepLR, self).__init__(optimizer, warmup_epochs, epochs) |         super(MultiStepLR, self).__init__(optimizer, warmup_epochs, epochs) | ||||||
|  |  | ||||||
|     def extra_repr(self): |     def extra_repr(self): | ||||||
|     return 'type={:}, milestones={:}, gammas={:}, base-lrs={:}'.format('multistep', self.milestones, self.gammas, self.base_lrs) |         return "type={:}, milestones={:}, gammas={:}, base-lrs={:}".format( | ||||||
|  |             "multistep", self.milestones, self.gammas, self.base_lrs | ||||||
|  |         ) | ||||||
|  |  | ||||||
|     def get_lr(self): |     def get_lr(self): | ||||||
|         lrs = [] |         lrs = [] | ||||||
| @@ -103,7 +105,8 @@ class MultiStepLR(_LRScheduler): | |||||||
|                 last_epoch = self.current_epoch - self.warmup_epochs |                 last_epoch = self.current_epoch - self.warmup_epochs | ||||||
|                 idx = bisect_right(self.milestones, last_epoch) |                 idx = bisect_right(self.milestones, last_epoch) | ||||||
|                 lr = base_lr |                 lr = base_lr | ||||||
|         for x in self.gammas[:idx]: lr *= x |                 for x in self.gammas[:idx]: | ||||||
|  |                     lr *= x | ||||||
|             else: |             else: | ||||||
|                 lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr |                 lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr | ||||||
|             lrs.append(lr) |             lrs.append(lr) | ||||||
| @@ -111,20 +114,19 @@ class MultiStepLR(_LRScheduler): | |||||||
|  |  | ||||||
|  |  | ||||||
| class ExponentialLR(_LRScheduler): | class ExponentialLR(_LRScheduler): | ||||||
|  |  | ||||||
|     def __init__(self, optimizer, warmup_epochs, epochs, gamma): |     def __init__(self, optimizer, warmup_epochs, epochs, gamma): | ||||||
|         self.gamma = gamma |         self.gamma = gamma | ||||||
|         super(ExponentialLR, self).__init__(optimizer, warmup_epochs, epochs) |         super(ExponentialLR, self).__init__(optimizer, warmup_epochs, epochs) | ||||||
|  |  | ||||||
|     def extra_repr(self): |     def extra_repr(self): | ||||||
|     return 'type={:}, gamma={:}, base-lrs={:}'.format('exponential', self.gamma, self.base_lrs) |         return "type={:}, gamma={:}, base-lrs={:}".format("exponential", self.gamma, self.base_lrs) | ||||||
|  |  | ||||||
|     def get_lr(self): |     def get_lr(self): | ||||||
|         lrs = [] |         lrs = [] | ||||||
|         for base_lr in self.base_lrs: |         for base_lr in self.base_lrs: | ||||||
|             if self.current_epoch >= self.warmup_epochs: |             if self.current_epoch >= self.warmup_epochs: | ||||||
|                 last_epoch = self.current_epoch - self.warmup_epochs |                 last_epoch = self.current_epoch - self.warmup_epochs | ||||||
|         assert last_epoch >= 0, 'invalid last_epoch : {:}'.format(last_epoch) |                 assert last_epoch >= 0, "invalid last_epoch : {:}".format(last_epoch) | ||||||
|                 lr = base_lr * (self.gamma ** last_epoch) |                 lr = base_lr * (self.gamma ** last_epoch) | ||||||
|             else: |             else: | ||||||
|                 lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr |                 lr = (self.current_epoch / self.warmup_epochs + self.current_iter / self.warmup_epochs) * base_lr | ||||||
| @@ -133,21 +135,22 @@ class ExponentialLR(_LRScheduler): | |||||||
|  |  | ||||||
|  |  | ||||||
| class LinearLR(_LRScheduler): | class LinearLR(_LRScheduler): | ||||||
|  |  | ||||||
|     def __init__(self, optimizer, warmup_epochs, epochs, max_LR, min_LR): |     def __init__(self, optimizer, warmup_epochs, epochs, max_LR, min_LR): | ||||||
|         self.max_LR = max_LR |         self.max_LR = max_LR | ||||||
|         self.min_LR = min_LR |         self.min_LR = min_LR | ||||||
|         super(LinearLR, self).__init__(optimizer, warmup_epochs, epochs) |         super(LinearLR, self).__init__(optimizer, warmup_epochs, epochs) | ||||||
|  |  | ||||||
|     def extra_repr(self): |     def extra_repr(self): | ||||||
|     return 'type={:}, max_LR={:}, min_LR={:}, base-lrs={:}'.format('LinearLR', self.max_LR, self.min_LR, self.base_lrs) |         return "type={:}, max_LR={:}, min_LR={:}, base-lrs={:}".format( | ||||||
|  |             "LinearLR", self.max_LR, self.min_LR, self.base_lrs | ||||||
|  |         ) | ||||||
|  |  | ||||||
|     def get_lr(self): |     def get_lr(self): | ||||||
|         lrs = [] |         lrs = [] | ||||||
|         for base_lr in self.base_lrs: |         for base_lr in self.base_lrs: | ||||||
|             if self.current_epoch >= self.warmup_epochs: |             if self.current_epoch >= self.warmup_epochs: | ||||||
|                 last_epoch = self.current_epoch - self.warmup_epochs |                 last_epoch = self.current_epoch - self.warmup_epochs | ||||||
|         assert last_epoch >= 0, 'invalid last_epoch : {:}'.format(last_epoch) |                 assert last_epoch >= 0, "invalid last_epoch : {:}".format(last_epoch) | ||||||
|                 ratio = (self.max_LR - self.min_LR) * last_epoch / self.max_epochs / self.max_LR |                 ratio = (self.max_LR - self.min_LR) * last_epoch / self.max_epochs / self.max_LR | ||||||
|                 lr = base_lr * (1 - ratio) |                 lr = base_lr * (1 - ratio) | ||||||
|             else: |             else: | ||||||
| @@ -156,9 +159,7 @@ class LinearLR(_LRScheduler): | |||||||
|         return lrs |         return lrs | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class CrossEntropyLabelSmooth(nn.Module): | class CrossEntropyLabelSmooth(nn.Module): | ||||||
|  |  | ||||||
|     def __init__(self, num_classes, epsilon): |     def __init__(self, num_classes, epsilon): | ||||||
|         super(CrossEntropyLabelSmooth, self).__init__() |         super(CrossEntropyLabelSmooth, self).__init__() | ||||||
|         self.num_classes = num_classes |         self.num_classes = num_classes | ||||||
| @@ -173,32 +174,35 @@ class CrossEntropyLabelSmooth(nn.Module): | |||||||
|         return loss |         return loss | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_optim_scheduler(parameters, config): | def get_optim_scheduler(parameters, config): | ||||||
|   assert hasattr(config, 'optim') and hasattr(config, 'scheduler') and hasattr(config, 'criterion'), 'config must have optim / scheduler / criterion keys instead of {:}'.format(config) |     assert ( | ||||||
|   if config.optim == 'SGD': |         hasattr(config, "optim") and hasattr(config, "scheduler") and hasattr(config, "criterion") | ||||||
|     optim = torch.optim.SGD(parameters, config.LR, momentum=config.momentum, weight_decay=config.decay, nesterov=config.nesterov) |     ), "config must have optim / scheduler / criterion keys instead of {:}".format(config) | ||||||
|   elif config.optim == 'RMSprop': |     if config.optim == "SGD": | ||||||
|  |         optim = torch.optim.SGD( | ||||||
|  |             parameters, config.LR, momentum=config.momentum, weight_decay=config.decay, nesterov=config.nesterov | ||||||
|  |         ) | ||||||
|  |     elif config.optim == "RMSprop": | ||||||
|         optim = torch.optim.RMSprop(parameters, config.LR, momentum=config.momentum, weight_decay=config.decay) |         optim = torch.optim.RMSprop(parameters, config.LR, momentum=config.momentum, weight_decay=config.decay) | ||||||
|     else: |     else: | ||||||
|     raise ValueError('invalid optim : {:}'.format(config.optim)) |         raise ValueError("invalid optim : {:}".format(config.optim)) | ||||||
|  |  | ||||||
|   if config.scheduler == 'cos': |     if config.scheduler == "cos": | ||||||
|     T_max = getattr(config, 'T_max', config.epochs) |         T_max = getattr(config, "T_max", config.epochs) | ||||||
|         scheduler = CosineAnnealingLR(optim, config.warmup, config.epochs, T_max, config.eta_min) |         scheduler = CosineAnnealingLR(optim, config.warmup, config.epochs, T_max, config.eta_min) | ||||||
|   elif config.scheduler == 'multistep': |     elif config.scheduler == "multistep": | ||||||
|         scheduler = MultiStepLR(optim, config.warmup, config.epochs, config.milestones, config.gammas) |         scheduler = MultiStepLR(optim, config.warmup, config.epochs, config.milestones, config.gammas) | ||||||
|   elif config.scheduler == 'exponential': |     elif config.scheduler == "exponential": | ||||||
|         scheduler = ExponentialLR(optim, config.warmup, config.epochs, config.gamma) |         scheduler = ExponentialLR(optim, config.warmup, config.epochs, config.gamma) | ||||||
|   elif config.scheduler == 'linear': |     elif config.scheduler == "linear": | ||||||
|         scheduler = LinearLR(optim, config.warmup, config.epochs, config.LR, config.LR_min) |         scheduler = LinearLR(optim, config.warmup, config.epochs, config.LR, config.LR_min) | ||||||
|     else: |     else: | ||||||
|     raise ValueError('invalid scheduler : {:}'.format(config.scheduler)) |         raise ValueError("invalid scheduler : {:}".format(config.scheduler)) | ||||||
|  |  | ||||||
|   if config.criterion == 'Softmax': |     if config.criterion == "Softmax": | ||||||
|         criterion = torch.nn.CrossEntropyLoss() |         criterion = torch.nn.CrossEntropyLoss() | ||||||
|   elif config.criterion == 'SmoothSoftmax': |     elif config.criterion == "SmoothSoftmax": | ||||||
|         criterion = CrossEntropyLabelSmooth(config.class_num, config.label_smooth) |         criterion = CrossEntropyLabelSmooth(config.class_num, config.label_smooth) | ||||||
|     else: |     else: | ||||||
|     raise ValueError('invalid criterion : {:}'.format(config.criterion)) |         raise ValueError("invalid criterion : {:}".format(config.criterion)) | ||||||
|     return optim, scheduler, criterion |     return optim, scheduler, criterion | ||||||
|   | |||||||
| @@ -7,11 +7,12 @@ from qlib.utils import init_instance_by_config | |||||||
| from qlib.workflow import R | from qlib.workflow import R | ||||||
| from qlib.utils import flatten_dict | from qlib.utils import flatten_dict | ||||||
| from qlib.log import set_log_basic_config | from qlib.log import set_log_basic_config | ||||||
|  | from qlib.log import get_module_logger | ||||||
|  |  | ||||||
|  |  | ||||||
| def update_gpu(config, gpu): | def update_gpu(config, gpu): | ||||||
|     config = config.copy() |     config = config.copy() | ||||||
|     if "task" in config and "GPU" in config["task"]["model"]: |     if "task" in config and "moodel" in config["task"] and "GPU" in config["task"]["model"]: | ||||||
|         config["task"]["model"]["GPU"] = gpu |         config["task"]["model"]["GPU"] = gpu | ||||||
|     elif "model" in config and "GPU" in config["model"]: |     elif "model" in config and "GPU" in config["model"]: | ||||||
|         config["model"]["GPU"] = gpu |         config["model"]["GPU"] = gpu | ||||||
| @@ -29,11 +30,6 @@ def update_market(config, market): | |||||||
|  |  | ||||||
| def run_exp(task_config, dataset, experiment_name, recorder_name, uri): | def run_exp(task_config, dataset, experiment_name, recorder_name, uri): | ||||||
|  |  | ||||||
|     # model initiaiton |  | ||||||
|     print("") |  | ||||||
|     print("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri)) |  | ||||||
|     print("dataset={:}".format(dataset)) |  | ||||||
|  |  | ||||||
|     model = init_instance_by_config(task_config["model"]) |     model = init_instance_by_config(task_config["model"]) | ||||||
|  |  | ||||||
|     # start exp |     # start exp | ||||||
| @@ -41,6 +37,10 @@ def run_exp(task_config, dataset, experiment_name, recorder_name, uri): | |||||||
|  |  | ||||||
|         log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name) |         log_file = R.get_recorder().root_uri / "{:}.log".format(experiment_name) | ||||||
|         set_log_basic_config(log_file) |         set_log_basic_config(log_file) | ||||||
|  |         logger = get_module_logger("q.run_exp") | ||||||
|  |         logger.info("task_config={:}".format(task_config)) | ||||||
|  |         logger.info("[{:}] - [{:}]: {:}".format(experiment_name, recorder_name, uri)) | ||||||
|  |         logger.info("dataset={:}".format(dataset)) | ||||||
|  |  | ||||||
|         # train model |         # train model | ||||||
|         R.log_params(**flatten_dict(task_config)) |         R.log_params(**flatten_dict(task_config)) | ||||||
|   | |||||||
| @@ -17,20 +17,38 @@ def get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant): | |||||||
|         loss = torch.log(expected_flop) |         loss = torch.log(expected_flop) | ||||||
|     else:  # Required FLOP |     else:  # Required FLOP | ||||||
|         loss = None |         loss = None | ||||||
|   if loss is None: return 0, 0 |     if loss is None: | ||||||
|   else           : return loss, loss.item() |         return 0, 0 | ||||||
|  |     else: | ||||||
|  |         return loss, loss.item() | ||||||
|  |  | ||||||
|  |  | ||||||
| def search_train(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, extra_info, print_freq, logger): | def search_train( | ||||||
|  |     search_loader, | ||||||
|  |     network, | ||||||
|  |     criterion, | ||||||
|  |     scheduler, | ||||||
|  |     base_optimizer, | ||||||
|  |     arch_optimizer, | ||||||
|  |     optim_config, | ||||||
|  |     extra_info, | ||||||
|  |     print_freq, | ||||||
|  |     logger, | ||||||
|  | ): | ||||||
|     data_time, batch_time = AverageMeter(), AverageMeter() |     data_time, batch_time = AverageMeter(), AverageMeter() | ||||||
|     base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() |     base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() | ||||||
|     arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter() |     arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter() | ||||||
|   epoch_str, flop_need, flop_weight, flop_tolerant = extra_info['epoch-str'], extra_info['FLOP-exp'], extra_info['FLOP-weight'], extra_info['FLOP-tolerant'] |     epoch_str, flop_need, flop_weight, flop_tolerant = ( | ||||||
|  |         extra_info["epoch-str"], | ||||||
|  |         extra_info["FLOP-exp"], | ||||||
|  |         extra_info["FLOP-weight"], | ||||||
|  |         extra_info["FLOP-tolerant"], | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     network.train() |     network.train() | ||||||
|   logger.log('[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}'.format(epoch_str, flop_need, flop_weight)) |     logger.log("[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}".format(epoch_str, flop_need, flop_weight)) | ||||||
|     end = time.time() |     end = time.time() | ||||||
|   network.apply( change_key('search_mode', 'search') ) |     network.apply(change_key("search_mode", "search")) | ||||||
|     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader): |     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader): | ||||||
|         scheduler.update(None, 1.0 * step / len(search_loader)) |         scheduler.update(None, 1.0 * step / len(search_loader)) | ||||||
|         # calculate prediction and loss |         # calculate prediction and loss | ||||||
| @@ -56,7 +74,7 @@ def search_train(search_loader, network, criterion, scheduler, base_optimizer, a | |||||||
|         # update the architecture |         # update the architecture | ||||||
|         arch_optimizer.zero_grad() |         arch_optimizer.zero_grad() | ||||||
|         logits, expected_flop = network(arch_inputs) |         logits, expected_flop = network(arch_inputs) | ||||||
|     flop_cur  = network.module.get_flop('genotype', None, None) |         flop_cur = network.module.get_flop("genotype", None, None) | ||||||
|         flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant) |         flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant) | ||||||
|         acls_loss = criterion(logits, arch_targets) |         acls_loss = criterion(logits, arch_targets) | ||||||
|         arch_loss = acls_loss + flop_loss * flop_weight |         arch_loss = acls_loss + flop_loss * flop_weight | ||||||
| @@ -72,27 +90,47 @@ def search_train(search_loader, network, criterion, scheduler, base_optimizer, a | |||||||
|         batch_time.update(time.time() - end) |         batch_time.update(time.time() - end) | ||||||
|         end = time.time() |         end = time.time() | ||||||
|         if step % print_freq == 0 or (step + 1) == len(search_loader): |         if step % print_freq == 0 or (step + 1) == len(search_loader): | ||||||
|       Sstr = '**TRAIN** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(search_loader)) |             Sstr = "**TRAIN** " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(search_loader)) | ||||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | ||||||
|       Lstr = 'Base-Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=base_losses, top1=top1, top5=top5) |                 batch_time=batch_time, data_time=data_time | ||||||
|       Vstr = 'Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})'.format(aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses) |             ) | ||||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr) |             Lstr = "Base-Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( | ||||||
|  |                 loss=base_losses, top1=top1, top5=top5 | ||||||
|  |             ) | ||||||
|  |             Vstr = "Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})".format( | ||||||
|  |                 aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses | ||||||
|  |             ) | ||||||
|  |             logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Vstr) | ||||||
|             # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size())) |             # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size())) | ||||||
|             # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr) |             # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' ' + Istr) | ||||||
|             # print(network.module.get_arch_info()) |             # print(network.module.get_arch_info()) | ||||||
|             # print(network.module.width_attentions[0]) |             # print(network.module.width_attentions[0]) | ||||||
|             # print(network.module.width_attentions[1]) |             # print(network.module.width_attentions[1]) | ||||||
|  |  | ||||||
|   logger.log(' **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, baseloss=base_losses.avg, archloss=arch_losses.avg)) |     logger.log( | ||||||
|  |         " **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}".format( | ||||||
|  |             top1=top1, | ||||||
|  |             top5=top5, | ||||||
|  |             error1=100 - top1.avg, | ||||||
|  |             error5=100 - top5.avg, | ||||||
|  |             baseloss=base_losses.avg, | ||||||
|  |             archloss=arch_losses.avg, | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     return base_losses.avg, arch_losses.avg, top1.avg, top5.avg |     return base_losses.avg, arch_losses.avg, top1.avg, top5.avg | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def search_valid(xloader, network, criterion, extra_info, print_freq, logger): | def search_valid(xloader, network, criterion, extra_info, print_freq, logger): | ||||||
|   data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() |     data_time, batch_time, losses, top1, top5 = ( | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     network.eval() |     network.eval() | ||||||
|   network.apply( change_key('search_mode', 'search') ) |     network.apply(change_key("search_mode", "search")) | ||||||
|     end = time.time() |     end = time.time() | ||||||
|     # logger.log('Starting evaluating {:}'.format(epoch_info)) |     # logger.log('Starting evaluating {:}'.format(epoch_info)) | ||||||
|     with torch.no_grad(): |     with torch.no_grad(): | ||||||
| @@ -115,12 +153,20 @@ def search_valid(xloader, network, criterion, extra_info, print_freq, logger): | |||||||
|             end = time.time() |             end = time.time() | ||||||
|  |  | ||||||
|             if i % print_freq == 0 or (i + 1) == len(xloader): |             if i % print_freq == 0 or (i + 1) == len(xloader): | ||||||
|         Sstr = '**VALID** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(extra_info, i, len(xloader)) |                 Sstr = "**VALID** " + time_string() + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader)) | ||||||
|         Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) |                 Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | ||||||
|         Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5) |                     batch_time=batch_time, data_time=data_time | ||||||
|         Istr = 'Size={:}'.format(list(inputs.size())) |                 ) | ||||||
|         logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr) |                 Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( | ||||||
|  |                     loss=losses, top1=top1, top5=top5 | ||||||
|  |                 ) | ||||||
|  |                 Istr = "Size={:}".format(list(inputs.size())) | ||||||
|  |                 logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr) | ||||||
|  |  | ||||||
|   logger.log(' **VALID** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg)) |     logger.log( | ||||||
|  |         " **VALID** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format( | ||||||
|  |             top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     return losses.avg, top1.avg, top5.avg |     return losses.avg, top1.avg, top5.avg | ||||||
|   | |||||||
| @@ -17,20 +17,38 @@ def get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant): | |||||||
|         loss = torch.log(expected_flop) |         loss = torch.log(expected_flop) | ||||||
|     else:  # Required FLOP |     else:  # Required FLOP | ||||||
|         loss = None |         loss = None | ||||||
|   if loss is None: return 0, 0 |     if loss is None: | ||||||
|   else           : return loss, loss.item() |         return 0, 0 | ||||||
|  |     else: | ||||||
|  |         return loss, loss.item() | ||||||
|  |  | ||||||
|  |  | ||||||
| def search_train_v2(search_loader, network, criterion, scheduler, base_optimizer, arch_optimizer, optim_config, extra_info, print_freq, logger): | def search_train_v2( | ||||||
|  |     search_loader, | ||||||
|  |     network, | ||||||
|  |     criterion, | ||||||
|  |     scheduler, | ||||||
|  |     base_optimizer, | ||||||
|  |     arch_optimizer, | ||||||
|  |     optim_config, | ||||||
|  |     extra_info, | ||||||
|  |     print_freq, | ||||||
|  |     logger, | ||||||
|  | ): | ||||||
|     data_time, batch_time = AverageMeter(), AverageMeter() |     data_time, batch_time = AverageMeter(), AverageMeter() | ||||||
|     base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() |     base_losses, arch_losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() | ||||||
|     arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter() |     arch_cls_losses, arch_flop_losses = AverageMeter(), AverageMeter() | ||||||
|   epoch_str, flop_need, flop_weight, flop_tolerant = extra_info['epoch-str'], extra_info['FLOP-exp'], extra_info['FLOP-weight'], extra_info['FLOP-tolerant'] |     epoch_str, flop_need, flop_weight, flop_tolerant = ( | ||||||
|  |         extra_info["epoch-str"], | ||||||
|  |         extra_info["FLOP-exp"], | ||||||
|  |         extra_info["FLOP-weight"], | ||||||
|  |         extra_info["FLOP-tolerant"], | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     network.train() |     network.train() | ||||||
|   logger.log('[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}'.format(epoch_str, flop_need, flop_weight)) |     logger.log("[Search] : {:}, FLOP-Require={:.2f} MB, FLOP-WEIGHT={:.2f}".format(epoch_str, flop_need, flop_weight)) | ||||||
|     end = time.time() |     end = time.time() | ||||||
|   network.apply( change_key('search_mode', 'search') ) |     network.apply(change_key("search_mode", "search")) | ||||||
|     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader): |     for step, (base_inputs, base_targets, arch_inputs, arch_targets) in enumerate(search_loader): | ||||||
|         scheduler.update(None, 1.0 * step / len(search_loader)) |         scheduler.update(None, 1.0 * step / len(search_loader)) | ||||||
|         # calculate prediction and loss |         # calculate prediction and loss | ||||||
| @@ -54,7 +72,7 @@ def search_train_v2(search_loader, network, criterion, scheduler, base_optimizer | |||||||
|         # update the architecture |         # update the architecture | ||||||
|         arch_optimizer.zero_grad() |         arch_optimizer.zero_grad() | ||||||
|         logits, expected_flop = network(arch_inputs) |         logits, expected_flop = network(arch_inputs) | ||||||
|     flop_cur  = network.module.get_flop('genotype', None, None) |         flop_cur = network.module.get_flop("genotype", None, None) | ||||||
|         flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant) |         flop_loss, flop_loss_scale = get_flop_loss(expected_flop, flop_cur, flop_need, flop_tolerant) | ||||||
|         acls_loss = criterion(logits, arch_targets) |         acls_loss = criterion(logits, arch_targets) | ||||||
|         arch_loss = acls_loss + flop_loss * flop_weight |         arch_loss = acls_loss + flop_loss * flop_weight | ||||||
| @@ -70,11 +88,17 @@ def search_train_v2(search_loader, network, criterion, scheduler, base_optimizer | |||||||
|         batch_time.update(time.time() - end) |         batch_time.update(time.time() - end) | ||||||
|         end = time.time() |         end = time.time() | ||||||
|         if step % print_freq == 0 or (step + 1) == len(search_loader): |         if step % print_freq == 0 or (step + 1) == len(search_loader): | ||||||
|       Sstr = '**TRAIN** ' + time_string() + ' [{:}][{:03d}/{:03d}]'.format(epoch_str, step, len(search_loader)) |             Sstr = "**TRAIN** " + time_string() + " [{:}][{:03d}/{:03d}]".format(epoch_str, step, len(search_loader)) | ||||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | ||||||
|       Lstr = 'Base-Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=base_losses, top1=top1, top5=top5) |                 batch_time=batch_time, data_time=data_time | ||||||
|       Vstr = 'Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})'.format(aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses) |             ) | ||||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr) |             Lstr = "Base-Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( | ||||||
|  |                 loss=base_losses, top1=top1, top5=top5 | ||||||
|  |             ) | ||||||
|  |             Vstr = "Acls-loss {aloss.val:.3f} ({aloss.avg:.3f}) FLOP-Loss {floss.val:.3f} ({floss.avg:.3f}) Arch-Loss {loss.val:.3f} ({loss.avg:.3f})".format( | ||||||
|  |                 aloss=arch_cls_losses, floss=arch_flop_losses, loss=arch_losses | ||||||
|  |             ) | ||||||
|  |             logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Vstr) | ||||||
|             # num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0 |             # num_bytes = torch.cuda.max_memory_allocated( next(network.parameters()).device ) * 1.0 | ||||||
|             # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6)) |             # logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Vstr + ' GPU={:.2f}MB'.format(num_bytes/1e6)) | ||||||
|             # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size())) |             # Istr = 'Bsz={:} Asz={:}'.format(list(base_inputs.size()), list(arch_inputs.size())) | ||||||
| @@ -83,5 +107,14 @@ def search_train_v2(search_loader, network, criterion, scheduler, base_optimizer | |||||||
|             # print(network.module.width_attentions[0]) |             # print(network.module.width_attentions[0]) | ||||||
|             # print(network.module.width_attentions[1]) |             # print(network.module.width_attentions[1]) | ||||||
|  |  | ||||||
|   logger.log(' **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, baseloss=base_losses.avg, archloss=arch_losses.avg)) |     logger.log( | ||||||
|  |         " **TRAIN** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Base-Loss:{baseloss:.3f}, Arch-Loss={archloss:.3f}".format( | ||||||
|  |             top1=top1, | ||||||
|  |             top5=top5, | ||||||
|  |             error1=100 - top1.avg, | ||||||
|  |             error5=100 - top5.avg, | ||||||
|  |             baseloss=base_losses.avg, | ||||||
|  |             archloss=arch_losses.avg, | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     return base_losses.avg, arch_losses.avg, top1.avg, top5.avg |     return base_losses.avg, arch_losses.avg, top1.avg, top5.avg | ||||||
|   | |||||||
| @@ -3,65 +3,100 @@ | |||||||
| ##################################################### | ##################################################### | ||||||
| import os, sys, time, torch | import os, sys, time, torch | ||||||
| import torch.nn.functional as F | import torch.nn.functional as F | ||||||
|  |  | ||||||
| # our modules | # our modules | ||||||
| from log_utils import AverageMeter, time_string | from log_utils import AverageMeter, time_string | ||||||
| from utils import obtain_accuracy | from utils import obtain_accuracy | ||||||
|  |  | ||||||
|  |  | ||||||
| def simple_KD_train(xloader, teacher, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger): | def simple_KD_train( | ||||||
|   loss, acc1, acc5 = procedure(xloader, teacher, network, criterion, scheduler, optimizer, 'train', optim_config, extra_info, print_freq, logger) |     xloader, teacher, network, criterion, scheduler, optimizer, optim_config, extra_info, print_freq, logger | ||||||
|  | ): | ||||||
|  |     loss, acc1, acc5 = procedure( | ||||||
|  |         xloader, | ||||||
|  |         teacher, | ||||||
|  |         network, | ||||||
|  |         criterion, | ||||||
|  |         scheduler, | ||||||
|  |         optimizer, | ||||||
|  |         "train", | ||||||
|  |         optim_config, | ||||||
|  |         extra_info, | ||||||
|  |         print_freq, | ||||||
|  |         logger, | ||||||
|  |     ) | ||||||
|     return loss, acc1, acc5 |     return loss, acc1, acc5 | ||||||
|  |  | ||||||
|  |  | ||||||
| def simple_KD_valid(xloader, teacher, network, criterion, optim_config, extra_info, print_freq, logger): | def simple_KD_valid(xloader, teacher, network, criterion, optim_config, extra_info, print_freq, logger): | ||||||
|     with torch.no_grad(): |     with torch.no_grad(): | ||||||
|     loss, acc1, acc5 = procedure(xloader, teacher, network, criterion, None, None, 'valid', optim_config, extra_info, print_freq, logger) |         loss, acc1, acc5 = procedure( | ||||||
|  |             xloader, teacher, network, criterion, None, None, "valid", optim_config, extra_info, print_freq, logger | ||||||
|  |         ) | ||||||
|     return loss, acc1, acc5 |     return loss, acc1, acc5 | ||||||
|  |  | ||||||
|  |  | ||||||
| def loss_KD_fn(criterion, student_logits, teacher_logits, studentFeatures, teacherFeatures, targets, alpha, temperature): | def loss_KD_fn( | ||||||
|   basic_loss = criterion(student_logits, targets) * (1. - alpha) |     criterion, student_logits, teacher_logits, studentFeatures, teacherFeatures, targets, alpha, temperature | ||||||
|  | ): | ||||||
|  |     basic_loss = criterion(student_logits, targets) * (1.0 - alpha) | ||||||
|     log_student = F.log_softmax(student_logits / temperature, dim=1) |     log_student = F.log_softmax(student_logits / temperature, dim=1) | ||||||
|     sof_teacher = F.softmax(teacher_logits / temperature, dim=1) |     sof_teacher = F.softmax(teacher_logits / temperature, dim=1) | ||||||
|   KD_loss    = F.kl_div(log_student, sof_teacher, reduction='batchmean') * (alpha * temperature * temperature) |     KD_loss = F.kl_div(log_student, sof_teacher, reduction="batchmean") * (alpha * temperature * temperature) | ||||||
|     return basic_loss + KD_loss |     return basic_loss + KD_loss | ||||||
|  |  | ||||||
|  |  | ||||||
| def procedure(xloader, teacher, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger): | def procedure(xloader, teacher, network, criterion, scheduler, optimizer, mode, config, extra_info, print_freq, logger): | ||||||
|   data_time, batch_time, losses, top1, top5 = AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter(), AverageMeter() |     data_time, batch_time, losses, top1, top5 = ( | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |         AverageMeter(), | ||||||
|  |     ) | ||||||
|     Ttop1, Ttop5 = AverageMeter(), AverageMeter() |     Ttop1, Ttop5 = AverageMeter(), AverageMeter() | ||||||
|   if mode == 'train': |     if mode == "train": | ||||||
|         network.train() |         network.train() | ||||||
|   elif mode == 'valid': |     elif mode == "valid": | ||||||
|         network.eval() |         network.eval() | ||||||
|   else: raise ValueError("The mode is not right : {:}".format(mode)) |     else: | ||||||
|  |         raise ValueError("The mode is not right : {:}".format(mode)) | ||||||
|     teacher.eval() |     teacher.eval() | ||||||
|  |  | ||||||
|   logger.log('[{:5s}] config :: auxiliary={:}, KD :: [alpha={:.2f}, temperature={:.2f}]'.format(mode, config.auxiliary if hasattr(config, 'auxiliary') else -1, config.KD_alpha, config.KD_temperature)) |     logger.log( | ||||||
|  |         "[{:5s}] config :: auxiliary={:}, KD :: [alpha={:.2f}, temperature={:.2f}]".format( | ||||||
|  |             mode, config.auxiliary if hasattr(config, "auxiliary") else -1, config.KD_alpha, config.KD_temperature | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     end = time.time() |     end = time.time() | ||||||
|     for i, (inputs, targets) in enumerate(xloader): |     for i, (inputs, targets) in enumerate(xloader): | ||||||
|     if mode == 'train': scheduler.update(None, 1.0 * i / len(xloader)) |         if mode == "train": | ||||||
|  |             scheduler.update(None, 1.0 * i / len(xloader)) | ||||||
|         # measure data loading time |         # measure data loading time | ||||||
|         data_time.update(time.time() - end) |         data_time.update(time.time() - end) | ||||||
|         # calculate prediction and loss |         # calculate prediction and loss | ||||||
|         targets = targets.cuda(non_blocking=True) |         targets = targets.cuda(non_blocking=True) | ||||||
|  |  | ||||||
|     if mode == 'train': optimizer.zero_grad() |         if mode == "train": | ||||||
|  |             optimizer.zero_grad() | ||||||
|  |  | ||||||
|         student_f, logits = network(inputs) |         student_f, logits = network(inputs) | ||||||
|         if isinstance(logits, list): |         if isinstance(logits, list): | ||||||
|       assert len(logits) == 2, 'logits must has {:} items instead of {:}'.format(2, len(logits)) |             assert len(logits) == 2, "logits must has {:} items instead of {:}".format(2, len(logits)) | ||||||
|             logits, logits_aux = logits |             logits, logits_aux = logits | ||||||
|         else: |         else: | ||||||
|             logits, logits_aux = logits, None |             logits, logits_aux = logits, None | ||||||
|         with torch.no_grad(): |         with torch.no_grad(): | ||||||
|             teacher_f, teacher_logits = teacher(inputs) |             teacher_f, teacher_logits = teacher(inputs) | ||||||
|  |  | ||||||
|     loss             = loss_KD_fn(criterion, logits, teacher_logits, student_f, teacher_f, targets, config.KD_alpha, config.KD_temperature) |         loss = loss_KD_fn( | ||||||
|     if config is not None and hasattr(config, 'auxiliary') and config.auxiliary > 0: |             criterion, logits, teacher_logits, student_f, teacher_f, targets, config.KD_alpha, config.KD_temperature | ||||||
|  |         ) | ||||||
|  |         if config is not None and hasattr(config, "auxiliary") and config.auxiliary > 0: | ||||||
|             loss_aux = criterion(logits_aux, targets) |             loss_aux = criterion(logits_aux, targets) | ||||||
|             loss += config.auxiliary * loss_aux |             loss += config.auxiliary * loss_aux | ||||||
|  |  | ||||||
|     if mode == 'train': |         if mode == "train": | ||||||
|             loss.backward() |             loss.backward() | ||||||
|             optimizer.step() |             optimizer.step() | ||||||
|  |  | ||||||
| @@ -80,15 +115,31 @@ def procedure(xloader, teacher, network, criterion, scheduler, optimizer, mode, | |||||||
|         end = time.time() |         end = time.time() | ||||||
|  |  | ||||||
|         if i % print_freq == 0 or (i + 1) == len(xloader): |         if i % print_freq == 0 or (i + 1) == len(xloader): | ||||||
|       Sstr = ' {:5s} '.format(mode.upper()) + time_string() + ' [{:}][{:03d}/{:03d}]'.format(extra_info, i, len(xloader)) |             Sstr = ( | ||||||
|  |                 " {:5s} ".format(mode.upper()) | ||||||
|  |                 + time_string() | ||||||
|  |                 + " [{:}][{:03d}/{:03d}]".format(extra_info, i, len(xloader)) | ||||||
|  |             ) | ||||||
|             if scheduler is not None: |             if scheduler is not None: | ||||||
|         Sstr += ' {:}'.format(scheduler.get_min_info()) |                 Sstr += " {:}".format(scheduler.get_min_info()) | ||||||
|       Tstr = 'Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})'.format(batch_time=batch_time, data_time=data_time) |             Tstr = "Time {batch_time.val:.2f} ({batch_time.avg:.2f}) Data {data_time.val:.2f} ({data_time.avg:.2f})".format( | ||||||
|       Lstr = 'Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})'.format(loss=losses, top1=top1, top5=top5) |                 batch_time=batch_time, data_time=data_time | ||||||
|       Lstr+= ' Teacher : acc@1={:.2f}, acc@5={:.2f}'.format(Ttop1.avg, Ttop5.avg) |             ) | ||||||
|       Istr = 'Size={:}'.format(list(inputs.size())) |             Lstr = "Loss {loss.val:.3f} ({loss.avg:.3f})  Prec@1 {top1.val:.2f} ({top1.avg:.2f}) Prec@5 {top5.val:.2f} ({top5.avg:.2f})".format( | ||||||
|       logger.log(Sstr + ' ' + Tstr + ' ' + Lstr + ' ' + Istr) |                 loss=losses, top1=top1, top5=top5 | ||||||
|  |             ) | ||||||
|  |             Lstr += " Teacher : acc@1={:.2f}, acc@5={:.2f}".format(Ttop1.avg, Ttop5.avg) | ||||||
|  |             Istr = "Size={:}".format(list(inputs.size())) | ||||||
|  |             logger.log(Sstr + " " + Tstr + " " + Lstr + " " + Istr) | ||||||
|  |  | ||||||
|   logger.log(' **{:5s}** accuracy drop :: @1={:.2f}, @5={:.2f}'.format(mode.upper(), Ttop1.avg - top1.avg, Ttop5.avg - top5.avg)) |     logger.log( | ||||||
|   logger.log(' **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}'.format(mode=mode.upper(), top1=top1, top5=top5, error1=100-top1.avg, error5=100-top5.avg, loss=losses.avg)) |         " **{:5s}** accuracy drop :: @1={:.2f}, @5={:.2f}".format( | ||||||
|  |             mode.upper(), Ttop1.avg - top1.avg, Ttop5.avg - top5.avg | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|  |     logger.log( | ||||||
|  |         " **{mode:5s}** Prec@1 {top1.avg:.2f} Prec@5 {top5.avg:.2f} Error@1 {error1:.2f} Error@5 {error5:.2f} Loss:{loss:.3f}".format( | ||||||
|  |             mode=mode.upper(), top1=top1, top5=top5, error1=100 - top1.avg, error5=100 - top5.avg, loss=losses.avg | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     return losses.avg, top1.avg, top5.avg |     return losses.avg, top1.avg, top5.avg | ||||||
|   | |||||||
| @@ -17,30 +17,35 @@ def prepare_seed(rand_seed): | |||||||
| def prepare_logger(xargs): | def prepare_logger(xargs): | ||||||
|     args = copy.deepcopy(xargs) |     args = copy.deepcopy(xargs) | ||||||
|     from log_utils import Logger |     from log_utils import Logger | ||||||
|  |  | ||||||
|     logger = Logger(args.save_dir, args.rand_seed) |     logger = Logger(args.save_dir, args.rand_seed) | ||||||
|   logger.log('Main Function with logger : {:}'.format(logger)) |     logger.log("Main Function with logger : {:}".format(logger)) | ||||||
|   logger.log('Arguments : -------------------------------') |     logger.log("Arguments : -------------------------------") | ||||||
|     for name, value in args._get_kwargs(): |     for name, value in args._get_kwargs(): | ||||||
|     logger.log('{:16} : {:}'.format(name, value)) |         logger.log("{:16} : {:}".format(name, value)) | ||||||
|   logger.log("Python  Version  : {:}".format(sys.version.replace('\n', ' '))) |     logger.log("Python  Version  : {:}".format(sys.version.replace("\n", " "))) | ||||||
|     logger.log("Pillow  Version  : {:}".format(PIL.__version__)) |     logger.log("Pillow  Version  : {:}".format(PIL.__version__)) | ||||||
|     logger.log("PyTorch Version  : {:}".format(torch.__version__)) |     logger.log("PyTorch Version  : {:}".format(torch.__version__)) | ||||||
|     logger.log("cuDNN   Version  : {:}".format(torch.backends.cudnn.version())) |     logger.log("cuDNN   Version  : {:}".format(torch.backends.cudnn.version())) | ||||||
|     logger.log("CUDA available   : {:}".format(torch.cuda.is_available())) |     logger.log("CUDA available   : {:}".format(torch.cuda.is_available())) | ||||||
|     logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count())) |     logger.log("CUDA GPU numbers : {:}".format(torch.cuda.device_count())) | ||||||
|   logger.log("CUDA_VISIBLE_DEVICES : {:}".format(os.environ['CUDA_VISIBLE_DEVICES'] if 'CUDA_VISIBLE_DEVICES' in os.environ else 'None')) |     logger.log( | ||||||
|  |         "CUDA_VISIBLE_DEVICES : {:}".format( | ||||||
|  |             os.environ["CUDA_VISIBLE_DEVICES"] if "CUDA_VISIBLE_DEVICES" in os.environ else "None" | ||||||
|  |         ) | ||||||
|  |     ) | ||||||
|     return logger |     return logger | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_machine_info(): | def get_machine_info(): | ||||||
|   info = "Python  Version  : {:}".format(sys.version.replace('\n', ' ')) |     info = "Python  Version  : {:}".format(sys.version.replace("\n", " ")) | ||||||
|     info += "\nPillow  Version  : {:}".format(PIL.__version__) |     info += "\nPillow  Version  : {:}".format(PIL.__version__) | ||||||
|     info += "\nPyTorch Version  : {:}".format(torch.__version__) |     info += "\nPyTorch Version  : {:}".format(torch.__version__) | ||||||
|     info += "\ncuDNN   Version  : {:}".format(torch.backends.cudnn.version()) |     info += "\ncuDNN   Version  : {:}".format(torch.backends.cudnn.version()) | ||||||
|     info += "\nCUDA available   : {:}".format(torch.cuda.is_available()) |     info += "\nCUDA available   : {:}".format(torch.cuda.is_available()) | ||||||
|     info += "\nCUDA GPU numbers : {:}".format(torch.cuda.device_count()) |     info += "\nCUDA GPU numbers : {:}".format(torch.cuda.device_count()) | ||||||
|   if 'CUDA_VISIBLE_DEVICES' in os.environ: |     if "CUDA_VISIBLE_DEVICES" in os.environ: | ||||||
|     info+= "\nCUDA_VISIBLE_DEVICES={:}".format(os.environ['CUDA_VISIBLE_DEVICES']) |         info += "\nCUDA_VISIBLE_DEVICES={:}".format(os.environ["CUDA_VISIBLE_DEVICES"]) | ||||||
|     else: |     else: | ||||||
|         info += "\nDoes not set CUDA_VISIBLE_DEVICES" |         info += "\nDoes not set CUDA_VISIBLE_DEVICES" | ||||||
|     return info |     return info | ||||||
| @@ -48,17 +53,21 @@ def get_machine_info(): | |||||||
|  |  | ||||||
| def save_checkpoint(state, filename, logger): | def save_checkpoint(state, filename, logger): | ||||||
|     if osp.isfile(filename): |     if osp.isfile(filename): | ||||||
|     if hasattr(logger, 'log'): logger.log('Find {:} exist, delete is at first before saving'.format(filename)) |         if hasattr(logger, "log"): | ||||||
|  |             logger.log("Find {:} exist, delete is at first before saving".format(filename)) | ||||||
|         os.remove(filename) |         os.remove(filename) | ||||||
|     torch.save(state, filename) |     torch.save(state, filename) | ||||||
|   assert osp.isfile(filename), 'save filename : {:} failed, which is not found.'.format(filename) |     assert osp.isfile(filename), "save filename : {:} failed, which is not found.".format(filename) | ||||||
|   if hasattr(logger, 'log'): logger.log('save checkpoint into {:}'.format(filename)) |     if hasattr(logger, "log"): | ||||||
|  |         logger.log("save checkpoint into {:}".format(filename)) | ||||||
|     return filename |     return filename | ||||||
|  |  | ||||||
|  |  | ||||||
| def copy_checkpoint(src, dst, logger): | def copy_checkpoint(src, dst, logger): | ||||||
|     if osp.isfile(dst): |     if osp.isfile(dst): | ||||||
|     if hasattr(logger, 'log'): logger.log('Find {:} exist, delete is at first before saving'.format(dst)) |         if hasattr(logger, "log"): | ||||||
|  |             logger.log("Find {:} exist, delete is at first before saving".format(dst)) | ||||||
|         os.remove(dst) |         os.remove(dst) | ||||||
|     copyfile(src, dst) |     copyfile(src, dst) | ||||||
|   if hasattr(logger, 'log'): logger.log('copy the file from {:} into {:}'.format(src, dst)) |     if hasattr(logger, "log"): | ||||||
|  |         logger.log("copy the file from {:} into {:}".format(src, dst)) | ||||||
|   | |||||||
| @@ -1,8 +1,10 @@ | |||||||
| # functions for affine transformation | # functions for affine transformation | ||||||
| import math, torch | import math | ||||||
|  | import torch | ||||||
| import numpy as np | import numpy as np | ||||||
| import torch.nn.functional as F | import torch.nn.functional as F | ||||||
|  |  | ||||||
|  |  | ||||||
| def identity2affine(full=False): | def identity2affine(full=False): | ||||||
|     if not full: |     if not full: | ||||||
|         parameters = torch.zeros((2, 3)) |         parameters = torch.zeros((2, 3)) | ||||||
| @@ -12,14 +14,17 @@ def identity2affine(full=False): | |||||||
|         parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1 |         parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1 | ||||||
|     return parameters |     return parameters | ||||||
|  |  | ||||||
|  |  | ||||||
| def normalize_L(x, L): | def normalize_L(x, L): | ||||||
|   return -1. + 2. * x / (L-1) |     return -1.0 + 2.0 * x / (L - 1) | ||||||
|  |  | ||||||
|  |  | ||||||
| def denormalize_L(x, L): | def denormalize_L(x, L): | ||||||
|     return (x + 1.0) / 2.0 * (L - 1) |     return (x + 1.0) / 2.0 * (L - 1) | ||||||
|  |  | ||||||
|  |  | ||||||
| def crop2affine(crop_box, W, H): | def crop2affine(crop_box, W, H): | ||||||
|   assert len(crop_box) == 4, 'Invalid crop-box : {:}'.format(crop_box) |     assert len(crop_box) == 4, "Invalid crop-box : {:}".format(crop_box) | ||||||
|     parameters = torch.zeros(3, 3) |     parameters = torch.zeros(3, 3) | ||||||
|     x1, y1 = normalize_L(crop_box[0], W), normalize_L(crop_box[1], H) |     x1, y1 = normalize_L(crop_box[0], W), normalize_L(crop_box[1], H) | ||||||
|     x2, y2 = normalize_L(crop_box[2], W), normalize_L(crop_box[3], H) |     x2, y2 = normalize_L(crop_box[2], W), normalize_L(crop_box[3], H) | ||||||
| @@ -31,6 +36,7 @@ def crop2affine(crop_box, W, H): | |||||||
|     parameters[2, 2] = 1 |     parameters[2, 2] = 1 | ||||||
|     return parameters |     return parameters | ||||||
|  |  | ||||||
|  |  | ||||||
| def scale2affine(scalex, scaley): | def scale2affine(scalex, scaley): | ||||||
|     parameters = torch.zeros(3, 3) |     parameters = torch.zeros(3, 3) | ||||||
|     parameters[0, 0] = scalex |     parameters[0, 0] = scalex | ||||||
| @@ -38,6 +44,7 @@ def scale2affine(scalex, scaley): | |||||||
|     parameters[2, 2] = 1 |     parameters[2, 2] = 1 | ||||||
|     return parameters |     return parameters | ||||||
|  |  | ||||||
|  |  | ||||||
| def offset2affine(offx, offy): | def offset2affine(offx, offy): | ||||||
|     parameters = torch.zeros(3, 3) |     parameters = torch.zeros(3, 3) | ||||||
|     parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1 |     parameters[0, 0] = parameters[1, 1] = parameters[2, 2] = 1 | ||||||
| @@ -45,16 +52,18 @@ def offset2affine(offx, offy): | |||||||
|     parameters[1, 2] = offy |     parameters[1, 2] = offy | ||||||
|     return parameters |     return parameters | ||||||
|  |  | ||||||
|  |  | ||||||
| def horizontalmirror2affine(): | def horizontalmirror2affine(): | ||||||
|     parameters = torch.zeros(3, 3) |     parameters = torch.zeros(3, 3) | ||||||
|     parameters[0, 0] = -1 |     parameters[0, 0] = -1 | ||||||
|     parameters[1, 1] = parameters[2, 2] = 1 |     parameters[1, 1] = parameters[2, 2] = 1 | ||||||
|     return parameters |     return parameters | ||||||
|  |  | ||||||
|  |  | ||||||
| # clockwise rotate image = counterclockwise rotate the rectangle | # clockwise rotate image = counterclockwise rotate the rectangle | ||||||
| # degree is between [0, 360] | # degree is between [0, 360] | ||||||
| def rotate2affine(degree): | def rotate2affine(degree): | ||||||
|   assert degree >= 0 and degree <= 360, 'Invalid degree : {:}'.format(degree) |     assert degree >= 0 and degree <= 360, "Invalid degree : {:}".format(degree) | ||||||
|     degree = degree / 180 * math.pi |     degree = degree / 180 * math.pi | ||||||
|     parameters = torch.zeros(3, 3) |     parameters = torch.zeros(3, 3) | ||||||
|     parameters[0, 0] = math.cos(-degree) |     parameters[0, 0] = math.cos(-degree) | ||||||
| @@ -64,48 +73,62 @@ def rotate2affine(degree): | |||||||
|     parameters[2, 2] = 1 |     parameters[2, 2] = 1 | ||||||
|     return parameters |     return parameters | ||||||
|  |  | ||||||
|  |  | ||||||
| # shape is a tuple [H, W] | # shape is a tuple [H, W] | ||||||
| def normalize_points(shape, points): | def normalize_points(shape, points): | ||||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   |     assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format( | ||||||
|   assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape) |         shape | ||||||
|  |     ) | ||||||
|  |     assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), "points are wrong : {:}".format(points.shape) | ||||||
|     (H, W), points = shape, points.clone() |     (H, W), points = shape, points.clone() | ||||||
|     points[0, :] = normalize_L(points[0, :], W) |     points[0, :] = normalize_L(points[0, :], W) | ||||||
|     points[1, :] = normalize_L(points[1, :], H) |     points[1, :] = normalize_L(points[1, :], H) | ||||||
|     return points |     return points | ||||||
|  |  | ||||||
|  |  | ||||||
| # shape is a tuple [H, W] | # shape is a tuple [H, W] | ||||||
| def normalize_points_batch(shape, points): | def normalize_points_batch(shape, points): | ||||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   |     assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format( | ||||||
|   assert isinstance(points, torch.Tensor) and (points.size(-1) == 2), 'points are wrong : {:}'.format(points.shape) |         shape | ||||||
|  |     ) | ||||||
|  |     assert isinstance(points, torch.Tensor) and (points.size(-1) == 2), "points are wrong : {:}".format(points.shape) | ||||||
|     (H, W), points = shape, points.clone() |     (H, W), points = shape, points.clone() | ||||||
|     x = normalize_L(points[..., 0], W) |     x = normalize_L(points[..., 0], W) | ||||||
|     y = normalize_L(points[..., 1], H) |     y = normalize_L(points[..., 1], H) | ||||||
|     return torch.stack((x, y), dim=-1) |     return torch.stack((x, y), dim=-1) | ||||||
|  |  | ||||||
|  |  | ||||||
| # shape is a tuple [H, W] | # shape is a tuple [H, W] | ||||||
| def denormalize_points(shape, points): | def denormalize_points(shape, points): | ||||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   |     assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format( | ||||||
|   assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), 'points are wrong : {:}'.format(points.shape) |         shape | ||||||
|  |     ) | ||||||
|  |     assert isinstance(points, torch.Tensor) and (points.shape[0] == 2), "points are wrong : {:}".format(points.shape) | ||||||
|     (H, W), points = shape, points.clone() |     (H, W), points = shape, points.clone() | ||||||
|     points[0, :] = denormalize_L(points[0, :], W) |     points[0, :] = denormalize_L(points[0, :], W) | ||||||
|     points[1, :] = denormalize_L(points[1, :], H) |     points[1, :] = denormalize_L(points[1, :], H) | ||||||
|     return points |     return points | ||||||
|  |  | ||||||
|  |  | ||||||
| # shape is a tuple [H, W] | # shape is a tuple [H, W] | ||||||
| def denormalize_points_batch(shape, points): | def denormalize_points_batch(shape, points): | ||||||
|   assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, 'invalid shape : {:}'.format(shape)   |     assert (isinstance(shape, tuple) or isinstance(shape, list)) and len(shape) == 2, "invalid shape : {:}".format( | ||||||
|   assert isinstance(points, torch.Tensor) and (points.shape[-1] == 2), 'points are wrong : {:}'.format(points.shape) |         shape | ||||||
|  |     ) | ||||||
|  |     assert isinstance(points, torch.Tensor) and (points.shape[-1] == 2), "points are wrong : {:}".format(points.shape) | ||||||
|     (H, W), points = shape, points.clone() |     (H, W), points = shape, points.clone() | ||||||
|     x = denormalize_L(points[..., 0], W) |     x = denormalize_L(points[..., 0], W) | ||||||
|     y = denormalize_L(points[..., 1], H) |     y = denormalize_L(points[..., 1], H) | ||||||
|     return torch.stack((x, y), dim=-1) |     return torch.stack((x, y), dim=-1) | ||||||
|  |  | ||||||
|  |  | ||||||
| # make target * theta = source | # make target * theta = source | ||||||
| def solve2theta(source, target): | def solve2theta(source, target): | ||||||
|     source, target = source.clone(), target.clone() |     source, target = source.clone(), target.clone() | ||||||
|     oks = source[2, :] == 1 |     oks = source[2, :] == 1 | ||||||
|   assert torch.sum(oks).item() >= 3, 'valid points : {:} is short'.format(oks) |     assert torch.sum(oks).item() >= 3, "valid points : {:} is short".format(oks) | ||||||
|   if target.size(0) == 2: target = torch.cat((target, oks.unsqueeze(0).float()), dim=0) |     if target.size(0) == 2: | ||||||
|  |         target = torch.cat((target, oks.unsqueeze(0).float()), dim=0) | ||||||
|     source, target = source[:, oks], target[:, oks] |     source, target = source[:, oks], target[:, oks] | ||||||
|     source, target = source.transpose(1, 0), target.transpose(1, 0) |     source, target = source.transpose(1, 0), target.transpose(1, 0) | ||||||
|     assert source.size(1) == target.size(1) == 3 |     assert source.size(1) == target.size(1) == 3 | ||||||
| @@ -115,11 +138,12 @@ def solve2theta(source, target): | |||||||
|     theta = X_[:3, :2].transpose(1, 0) |     theta = X_[:3, :2].transpose(1, 0) | ||||||
|     return theta |     return theta | ||||||
|  |  | ||||||
|  |  | ||||||
| # shape = [H,W] | # shape = [H,W] | ||||||
| def affine2image(image, theta, shape): | def affine2image(image, theta, shape): | ||||||
|     C, H, W = image.size() |     C, H, W = image.size() | ||||||
|     theta = theta[:2, :].unsqueeze(0) |     theta = theta[:2, :].unsqueeze(0) | ||||||
|     grid_size = torch.Size([1, C, shape[0], shape[1]]) |     grid_size = torch.Size([1, C, shape[0], shape[1]]) | ||||||
|     grid = F.affine_grid(theta, grid_size) |     grid = F.affine_grid(theta, grid_size) | ||||||
|   affI  = F.grid_sample(image.unsqueeze(0), grid, mode='bilinear', padding_mode='border') |     affI = F.grid_sample(image.unsqueeze(0), grid, mode="bilinear", padding_mode="border") | ||||||
|     return affI.squeeze(0) |     return affI.squeeze(0) | ||||||
|   | |||||||
| @@ -1,5 +1,6 @@ | |||||||
| import torch | import torch | ||||||
|  |  | ||||||
|  |  | ||||||
| def obtain_accuracy(output, target, topk=(1,)): | def obtain_accuracy(output, target, topk=(1,)): | ||||||
|     """Computes the precision@k for the specified values of k""" |     """Computes the precision@k for the specified values of k""" | ||||||
|     maxk = max(topk) |     maxk = max(topk) | ||||||
|   | |||||||
| @@ -33,17 +33,18 @@ def get_model_infos(model, shape): | |||||||
|     # cache_inputs = torch.zeros(*shape).cuda() |     # cache_inputs = torch.zeros(*shape).cuda() | ||||||
|     # cache_inputs = torch.zeros(*shape) |     # cache_inputs = torch.zeros(*shape) | ||||||
|     cache_inputs = torch.rand(*shape) |     cache_inputs = torch.rand(*shape) | ||||||
|   if next(model.parameters()).is_cuda: cache_inputs = cache_inputs.cuda() |     if next(model.parameters()).is_cuda: | ||||||
|  |         cache_inputs = cache_inputs.cuda() | ||||||
|     # print_log('In the calculating function : cache input size : {:}'.format(cache_inputs.size()), log) |     # print_log('In the calculating function : cache input size : {:}'.format(cache_inputs.size()), log) | ||||||
|     with torch.no_grad(): |     with torch.no_grad(): | ||||||
|         _____ = model(cache_inputs) |         _____ = model(cache_inputs) | ||||||
|     FLOPs = compute_average_flops_cost(model) / 1e6 |     FLOPs = compute_average_flops_cost(model) / 1e6 | ||||||
|     Param = count_parameters_in_MB(model) |     Param = count_parameters_in_MB(model) | ||||||
|  |  | ||||||
|   if hasattr(model, 'auxiliary_param'): |     if hasattr(model, "auxiliary_param"): | ||||||
|         aux_params = count_parameters_in_MB(model.auxiliary_param()) |         aux_params = count_parameters_in_MB(model.auxiliary_param()) | ||||||
|     print ('The auxiliary params of this model is : {:}'.format(aux_params)) |         print("The auxiliary params of this model is : {:}".format(aux_params)) | ||||||
|     print ('We remove the auxiliary params from the total params ({:}) when counting'.format(Param)) |         print("We remove the auxiliary params from the total params ({:}) when counting".format(Param)) | ||||||
|         Param = Param - aux_params |         Param = Param - aux_params | ||||||
|  |  | ||||||
|     # print_log('FLOPs : {:} MB'.format(FLOPs), log) |     # print_log('FLOPs : {:} MB'.format(FLOPs), log) | ||||||
| @@ -61,7 +62,6 @@ def add_flops_counting_methods( model ): | |||||||
|     return model |     return model | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def compute_average_flops_cost(model): | def compute_average_flops_cost(model): | ||||||
|     """ |     """ | ||||||
|     A method that will be available after add_flops_counting_methods() is called on a desired net object. |     A method that will be available after add_flops_counting_methods() is called on a desired net object. | ||||||
| @@ -71,9 +71,12 @@ def compute_average_flops_cost(model): | |||||||
|     flops_sum = 0 |     flops_sum = 0 | ||||||
|     # or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \ |     # or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \ | ||||||
|     for module in model.modules(): |     for module in model.modules(): | ||||||
|     if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear) \ |         if ( | ||||||
|       or isinstance(module, torch.nn.Conv1d) \ |             isinstance(module, torch.nn.Conv2d) | ||||||
|       or hasattr(module, 'calculate_flop_self'): |             or isinstance(module, torch.nn.Linear) | ||||||
|  |             or isinstance(module, torch.nn.Conv1d) | ||||||
|  |             or hasattr(module, "calculate_flop_self") | ||||||
|  |         ): | ||||||
|             flops_sum += module.__flops__ |             flops_sum += module.__flops__ | ||||||
|     return flops_sum / batches_count |     return flops_sum / batches_count | ||||||
|  |  | ||||||
| @@ -83,7 +86,7 @@ def pool_flops_counter_hook(pool_module, inputs, output): | |||||||
|     batch_size = inputs[0].size(0) |     batch_size = inputs[0].size(0) | ||||||
|     kernel_size = pool_module.kernel_size |     kernel_size = pool_module.kernel_size | ||||||
|     out_C, output_height, output_width = output.shape[1:] |     out_C, output_height, output_width = output.shape[1:] | ||||||
|   assert out_C == inputs[0].size(1), '{:} vs. {:}'.format(out_C, inputs[0].size()) |     assert out_C == inputs[0].size(1), "{:} vs. {:}".format(out_C, inputs[0].size()) | ||||||
|  |  | ||||||
|     overall_flops = batch_size * out_C * output_height * output_width * kernel_size * kernel_size |     overall_flops = batch_size * out_C * output_height * output_width * kernel_size * kernel_size | ||||||
|     pool_module.__flops__ += overall_flops |     pool_module.__flops__ += overall_flops | ||||||
| @@ -97,7 +100,7 @@ def self_calculate_flops_counter_hook(self_module, inputs, output): | |||||||
| def fc_flops_counter_hook(fc_module, inputs, output): | def fc_flops_counter_hook(fc_module, inputs, output): | ||||||
|     batch_size = inputs[0].size(0) |     batch_size = inputs[0].size(0) | ||||||
|     xin, xout = fc_module.in_features, fc_module.out_features |     xin, xout = fc_module.in_features, fc_module.out_features | ||||||
|   assert xin == inputs[0].size(1) and xout == output.size(1), 'IO=({:}, {:})'.format(xin, xout) |     assert xin == inputs[0].size(1) and xout == output.size(1), "IO=({:}, {:})".format(xin, xout) | ||||||
|     overall_flops = batch_size * xin * xout |     overall_flops = batch_size * xin * xout | ||||||
|     if fc_module.bias is not None: |     if fc_module.bias is not None: | ||||||
|         overall_flops += batch_size * xout |         overall_flops += batch_size * xout | ||||||
| @@ -147,48 +150,53 @@ def batch_counter_hook(module, inputs, output): | |||||||
|  |  | ||||||
|  |  | ||||||
| def add_batch_counter_hook_function(module): | def add_batch_counter_hook_function(module): | ||||||
|   if not hasattr(module, '__batch_counter_handle__'): |     if not hasattr(module, "__batch_counter_handle__"): | ||||||
|         handle = module.register_forward_hook(batch_counter_hook) |         handle = module.register_forward_hook(batch_counter_hook) | ||||||
|         module.__batch_counter_handle__ = handle |         module.__batch_counter_handle__ = handle | ||||||
|  |  | ||||||
|  |  | ||||||
| def add_flops_counter_variable_or_reset(module): | def add_flops_counter_variable_or_reset(module): | ||||||
|   if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.Linear) \ |     if ( | ||||||
|     or isinstance(module, torch.nn.Conv1d) \ |         isinstance(module, torch.nn.Conv2d) | ||||||
|     or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d) \ |         or isinstance(module, torch.nn.Linear) | ||||||
|     or hasattr(module, 'calculate_flop_self'): |         or isinstance(module, torch.nn.Conv1d) | ||||||
|  |         or isinstance(module, torch.nn.AvgPool2d) | ||||||
|  |         or isinstance(module, torch.nn.MaxPool2d) | ||||||
|  |         or hasattr(module, "calculate_flop_self") | ||||||
|  |     ): | ||||||
|         module.__flops__ = 0 |         module.__flops__ = 0 | ||||||
|  |  | ||||||
|  |  | ||||||
| def add_flops_counter_hook_function(module): | def add_flops_counter_hook_function(module): | ||||||
|     if isinstance(module, torch.nn.Conv2d): |     if isinstance(module, torch.nn.Conv2d): | ||||||
|     if not hasattr(module, '__flops_handle__'): |         if not hasattr(module, "__flops_handle__"): | ||||||
|             handle = module.register_forward_hook(conv2d_flops_counter_hook) |             handle = module.register_forward_hook(conv2d_flops_counter_hook) | ||||||
|             module.__flops_handle__ = handle |             module.__flops_handle__ = handle | ||||||
|     elif isinstance(module, torch.nn.Conv1d): |     elif isinstance(module, torch.nn.Conv1d): | ||||||
|     if not hasattr(module, '__flops_handle__'): |         if not hasattr(module, "__flops_handle__"): | ||||||
|             handle = module.register_forward_hook(conv1d_flops_counter_hook) |             handle = module.register_forward_hook(conv1d_flops_counter_hook) | ||||||
|             module.__flops_handle__ = handle |             module.__flops_handle__ = handle | ||||||
|     elif isinstance(module, torch.nn.Linear): |     elif isinstance(module, torch.nn.Linear): | ||||||
|     if not hasattr(module, '__flops_handle__'): |         if not hasattr(module, "__flops_handle__"): | ||||||
|             handle = module.register_forward_hook(fc_flops_counter_hook) |             handle = module.register_forward_hook(fc_flops_counter_hook) | ||||||
|             module.__flops_handle__ = handle |             module.__flops_handle__ = handle | ||||||
|     elif isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d): |     elif isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d): | ||||||
|     if not hasattr(module, '__flops_handle__'): |         if not hasattr(module, "__flops_handle__"): | ||||||
|             handle = module.register_forward_hook(pool_flops_counter_hook) |             handle = module.register_forward_hook(pool_flops_counter_hook) | ||||||
|             module.__flops_handle__ = handle |             module.__flops_handle__ = handle | ||||||
|   elif hasattr(module, 'calculate_flop_self'): # self-defined module |     elif hasattr(module, "calculate_flop_self"):  # self-defined module | ||||||
|     if not hasattr(module, '__flops_handle__'): |         if not hasattr(module, "__flops_handle__"): | ||||||
|             handle = module.register_forward_hook(self_calculate_flops_counter_hook) |             handle = module.register_forward_hook(self_calculate_flops_counter_hook) | ||||||
|             module.__flops_handle__ = handle |             module.__flops_handle__ = handle | ||||||
|  |  | ||||||
|  |  | ||||||
| def remove_hook_function(module): | def remove_hook_function(module): | ||||||
|   hookers = ['__batch_counter_handle__', '__flops_handle__'] |     hookers = ["__batch_counter_handle__", "__flops_handle__"] | ||||||
|     for hooker in hookers: |     for hooker in hookers: | ||||||
|         if hasattr(module, hooker): |         if hasattr(module, hooker): | ||||||
|             handle = getattr(module, hooker) |             handle = getattr(module, hooker) | ||||||
|             handle.remove() |             handle.remove() | ||||||
|   keys = ['__flops__', '__batch_counter__', '__flops__'] + hookers |     keys = ["__flops__", "__batch_counter__", "__flops__"] + hookers | ||||||
|     for ckey in keys: |     for ckey in keys: | ||||||
|     if hasattr(module, ckey): delattr(module, ckey) |         if hasattr(module, ckey): | ||||||
|  |             delattr(module, ckey) | ||||||
|   | |||||||
| @@ -1,66 +1,70 @@ | |||||||
| import os | import os | ||||||
|  |  | ||||||
| class GPUManager(): |  | ||||||
|   queries = ('index', 'gpu_name', 'memory.free', 'memory.used', 'memory.total', 'power.draw', 'power.limit') | class GPUManager: | ||||||
|  |     queries = ("index", "gpu_name", "memory.free", "memory.used", "memory.total", "power.draw", "power.limit") | ||||||
|  |  | ||||||
|     def __init__(self): |     def __init__(self): | ||||||
|         all_gpus = self.query_gpu(False) |         all_gpus = self.query_gpu(False) | ||||||
|  |  | ||||||
|     def get_info(self, ctype): |     def get_info(self, ctype): | ||||||
|     cmd = 'nvidia-smi --query-gpu={} --format=csv,noheader'.format(ctype) |         cmd = "nvidia-smi --query-gpu={} --format=csv,noheader".format(ctype) | ||||||
|         lines = os.popen(cmd).readlines() |         lines = os.popen(cmd).readlines() | ||||||
|     lines = [line.strip('\n') for line in lines] |         lines = [line.strip("\n") for line in lines] | ||||||
|         return lines |         return lines | ||||||
|  |  | ||||||
|     def query_gpu(self, show=True): |     def query_gpu(self, show=True): | ||||||
|     num_gpus = len( self.get_info('index') ) |         num_gpus = len(self.get_info("index")) | ||||||
|         all_gpus = [{} for i in range(num_gpus)] |         all_gpus = [{} for i in range(num_gpus)] | ||||||
|         for query in self.queries: |         for query in self.queries: | ||||||
|             infos = self.get_info(query) |             infos = self.get_info(query) | ||||||
|             for idx, info in enumerate(infos): |             for idx, info in enumerate(infos): | ||||||
|                 all_gpus[idx][query] = info |                 all_gpus[idx][query] = info | ||||||
|  |  | ||||||
|     if 'CUDA_VISIBLE_DEVICES' in os.environ: |         if "CUDA_VISIBLE_DEVICES" in os.environ: | ||||||
|       CUDA_VISIBLE_DEVICES = os.environ['CUDA_VISIBLE_DEVICES'].split(',') |             CUDA_VISIBLE_DEVICES = os.environ["CUDA_VISIBLE_DEVICES"].split(",") | ||||||
|             selected_gpus = [] |             selected_gpus = [] | ||||||
|             for idx, CUDA_VISIBLE_DEVICE in enumerate(CUDA_VISIBLE_DEVICES): |             for idx, CUDA_VISIBLE_DEVICE in enumerate(CUDA_VISIBLE_DEVICES): | ||||||
|                 find = False |                 find = False | ||||||
|                 for gpu in all_gpus: |                 for gpu in all_gpus: | ||||||
|           if gpu['index'] == CUDA_VISIBLE_DEVICE: |                     if gpu["index"] == CUDA_VISIBLE_DEVICE: | ||||||
|             assert not find, 'Duplicate cuda device index : {}'.format(CUDA_VISIBLE_DEVICE) |                         assert not find, "Duplicate cuda device index : {}".format(CUDA_VISIBLE_DEVICE) | ||||||
|                         find = True |                         find = True | ||||||
|                         selected_gpus.append(gpu.copy()) |                         selected_gpus.append(gpu.copy()) | ||||||
|             selected_gpus[-1]['index'] = '{}'.format(idx) |                         selected_gpus[-1]["index"] = "{}".format(idx) | ||||||
|         assert find, 'Does not find the device : {}'.format(CUDA_VISIBLE_DEVICE) |                 assert find, "Does not find the device : {}".format(CUDA_VISIBLE_DEVICE) | ||||||
|             all_gpus = selected_gpus |             all_gpus = selected_gpus | ||||||
|  |  | ||||||
|         if show: |         if show: | ||||||
|       allstrings = '' |             allstrings = "" | ||||||
|             for gpu in all_gpus: |             for gpu in all_gpus: | ||||||
|         string = '| ' |                 string = "| " | ||||||
|                 for query in self.queries: |                 for query in self.queries: | ||||||
|           if query.find('memory') == 0: xinfo = '{:>9}'.format(gpu[query]) |                     if query.find("memory") == 0: | ||||||
|           else:                         xinfo = gpu[query] |                         xinfo = "{:>9}".format(gpu[query]) | ||||||
|           string = string + query + ' : ' + xinfo + ' | ' |                     else: | ||||||
|         allstrings = allstrings + string + '\n' |                         xinfo = gpu[query] | ||||||
|  |                     string = string + query + " : " + xinfo + " | " | ||||||
|  |                 allstrings = allstrings + string + "\n" | ||||||
|             return allstrings |             return allstrings | ||||||
|         else: |         else: | ||||||
|             return all_gpus |             return all_gpus | ||||||
|  |  | ||||||
|     def select_by_memory(self, numbers=1): |     def select_by_memory(self, numbers=1): | ||||||
|         all_gpus = self.query_gpu(False) |         all_gpus = self.query_gpu(False) | ||||||
|     assert numbers <= len(all_gpus), 'Require {} gpus more than you have'.format(numbers) |         assert numbers <= len(all_gpus), "Require {} gpus more than you have".format(numbers) | ||||||
|         alls = [] |         alls = [] | ||||||
|         for idx, gpu in enumerate(all_gpus): |         for idx, gpu in enumerate(all_gpus): | ||||||
|       free_memory = gpu['memory.free'] |             free_memory = gpu["memory.free"] | ||||||
|       free_memory = free_memory.split(' ')[0] |             free_memory = free_memory.split(" ")[0] | ||||||
|             free_memory = int(free_memory) |             free_memory = int(free_memory) | ||||||
|       index = gpu['index'] |             index = gpu["index"] | ||||||
|             alls.append((free_memory, index)) |             alls.append((free_memory, index)) | ||||||
|         alls.sort(reverse=True) |         alls.sort(reverse=True) | ||||||
|         alls = [int(alls[i][1]) for i in range(numbers)] |         alls = [int(alls[i][1]) for i in range(numbers)] | ||||||
|         return sorted(alls) |         return sorted(alls) | ||||||
|  |  | ||||||
|  |  | ||||||
| """ | """ | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   manager = GPUManager() |   manager = GPUManager() | ||||||
|   | |||||||
| @@ -1,4 +1,5 @@ | |||||||
| import os, hashlib | import os | ||||||
|  | import hashlib | ||||||
|  |  | ||||||
|  |  | ||||||
| def get_md5_file(file_path, post_truncated=5): | def get_md5_file(file_path, post_truncated=5): | ||||||
| @@ -9,7 +10,7 @@ def get_md5_file(file_path, post_truncated=5): | |||||||
|         md5_hash.update(content) |         md5_hash.update(content) | ||||||
|         digest = md5_hash.hexdigest() |         digest = md5_hash.hexdigest() | ||||||
|     else: |     else: | ||||||
|     raise ValueError('[get_md5_file] {:} does not exist'.format(file_path)) |         raise ValueError("[get_md5_file] {:} does not exist".format(file_path)) | ||||||
|     if post_truncated is None: |     if post_truncated is None: | ||||||
|         return digest |         return digest | ||||||
|     else: |     else: | ||||||
|   | |||||||
| @@ -10,7 +10,9 @@ from log_utils import time_string | |||||||
|  |  | ||||||
|  |  | ||||||
| def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | ||||||
|   print ('This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function.') |     print( | ||||||
|  |         "This is an old version of codes to use NAS-Bench-API, and should be modified to align with the new version. Please contact me for more details if you use this function." | ||||||
|  |     ) | ||||||
|     weights = deepcopy(model.state_dict()) |     weights = deepcopy(model.state_dict()) | ||||||
|     model.train(cal_mode) |     model.train(cal_mode) | ||||||
|     with torch.no_grad(): |     with torch.no_grad(): | ||||||
| @@ -22,24 +24,28 @@ def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | |||||||
|         random.shuffle(archs) |         random.shuffle(archs) | ||||||
|         for idx, arch in enumerate(archs): |         for idx, arch in enumerate(archs): | ||||||
|             arch_index = api.query_index_by_arch(arch) |             arch_index = api.query_index_by_arch(arch) | ||||||
|       metrics = api.get_more_info(arch_index, 'cifar10-valid', None, False, False) |             metrics = api.get_more_info(arch_index, "cifar10-valid", None, False, False) | ||||||
|       gt_accs_10_valid.append( metrics['valid-accuracy'] ) |             gt_accs_10_valid.append(metrics["valid-accuracy"]) | ||||||
|       metrics = api.get_more_info(arch_index, 'cifar10', None, False, False) |             metrics = api.get_more_info(arch_index, "cifar10", None, False, False) | ||||||
|       gt_accs_10_test.append( metrics['test-accuracy'] ) |             gt_accs_10_test.append(metrics["test-accuracy"]) | ||||||
|             select_logits = [] |             select_logits = [] | ||||||
|             for i, node_info in enumerate(arch.nodes): |             for i, node_info in enumerate(arch.nodes): | ||||||
|                 for op, xin in node_info: |                 for op, xin in node_info: | ||||||
|           node_str = '{:}<-{:}'.format(i+1, xin) |                     node_str = "{:}<-{:}".format(i + 1, xin) | ||||||
|                     op_index = model.op_names.index(op) |                     op_index = model.op_names.index(op) | ||||||
|                     select_logits.append(logits[model.edge2index[node_str], op_index]) |                     select_logits.append(logits[model.edge2index[node_str], op_index]) | ||||||
|             cur_prob = sum(select_logits).item() |             cur_prob = sum(select_logits).item() | ||||||
|             probs.append(cur_prob) |             probs.append(cur_prob) | ||||||
|         cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0, 1] |         cor_prob_valid = np.corrcoef(probs, gt_accs_10_valid)[0, 1] | ||||||
|         cor_prob_test = np.corrcoef(probs, gt_accs_10_test)[0, 1] |         cor_prob_test = np.corrcoef(probs, gt_accs_10_test)[0, 1] | ||||||
|     print ('{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test'.format(time_string(), cor_prob_valid, cor_prob_test)) |         print( | ||||||
|  |             "{:} correlation for probabilities : {:.6f} on CIFAR-10 validation and {:.6f} on CIFAR-10 test".format( | ||||||
|  |                 time_string(), cor_prob_valid, cor_prob_test | ||||||
|  |             ) | ||||||
|  |         ) | ||||||
|  |  | ||||||
|         for idx, arch in enumerate(archs): |         for idx, arch in enumerate(archs): | ||||||
|       model.set_cal_mode('dynamic', arch) |             model.set_cal_mode("dynamic", arch) | ||||||
|             try: |             try: | ||||||
|                 inputs, targets = next(loader_iter) |                 inputs, targets = next(loader_iter) | ||||||
|             except: |             except: | ||||||
| @@ -52,6 +58,10 @@ def evaluate_one_shot(model, xloader, api, cal_mode, seed=111): | |||||||
|             if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)): |             if idx != 0 and (idx % 500 == 0 or idx + 1 == len(archs)): | ||||||
|                 cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[: idx + 1])[0, 1] |                 cor_accs_valid = np.corrcoef(accuracies, gt_accs_10_valid[: idx + 1])[0, 1] | ||||||
|                 cor_accs_test = np.corrcoef(accuracies, gt_accs_10_test[: idx + 1])[0, 1] |                 cor_accs_test = np.corrcoef(accuracies, gt_accs_10_test[: idx + 1])[0, 1] | ||||||
|         print ('{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.'.format(time_string(), idx, len(archs), 'Train' if cal_mode else 'Eval', cor_accs_valid, cor_accs_test)) |                 print( | ||||||
|  |                     "{:} {:05d}/{:05d} mode={:5s}, correlation : accs={:.5f} for CIFAR-10 valid, {:.5f} for CIFAR-10 test.".format( | ||||||
|  |                         time_string(), idx, len(archs), "Train" if cal_mode else "Eval", cor_accs_valid, cor_accs_test | ||||||
|  |                     ) | ||||||
|  |                 ) | ||||||
|     model.load_state_dict(weights) |     model.load_state_dict(weights) | ||||||
|     return archs, probs, accuracies |     return archs, probs, accuracies | ||||||
|   | |||||||
| @@ -1,18 +1,17 @@ | |||||||
|  |  | ||||||
| def split_str2indexes(string: str, max_check: int, length_limit=5): | def split_str2indexes(string: str, max_check: int, length_limit=5): | ||||||
|     if not isinstance(string, str): |     if not isinstance(string, str): | ||||||
|     raise ValueError('Invalid scheme for {:}'.format(string)) |         raise ValueError("Invalid scheme for {:}".format(string)) | ||||||
|     srangestr = "".join(string.split()) |     srangestr = "".join(string.split()) | ||||||
|     indexes = set() |     indexes = set() | ||||||
|   for srange in srangestr.split(','): |     for srange in srangestr.split(","): | ||||||
|     srange = srange.split('-') |         srange = srange.split("-") | ||||||
|         if len(srange) != 2: |         if len(srange) != 2: | ||||||
|       raise ValueError('invalid srange : {:}'.format(srange)) |             raise ValueError("invalid srange : {:}".format(srange)) | ||||||
|         if length_limit is not None: |         if length_limit is not None: | ||||||
|       assert len(srange[0]) == len(srange[1]) == length_limit, 'invalid srange : {:}'.format(srange) |             assert len(srange[0]) == len(srange[1]) == length_limit, "invalid srange : {:}".format(srange) | ||||||
|         srange = (int(srange[0]), int(srange[1])) |         srange = (int(srange[0]), int(srange[1])) | ||||||
|         if not (0 <= srange[0] <= srange[1] < max_check): |         if not (0 <= srange[0] <= srange[1] < max_check): | ||||||
|       raise ValueError('{:} vs {:} vs {:}'.format(srange[0], srange[1], max_check)) |             raise ValueError("{:} vs {:} vs {:}".format(srange[0], srange[1], max_check)) | ||||||
|         for i in range(srange[0], srange[1] + 1): |         for i in range(srange[0], srange[1] + 1): | ||||||
|             indexes.add(i) |             indexes.add(i) | ||||||
|     return indexes |     return indexes | ||||||
|   | |||||||
| @@ -21,11 +21,12 @@ def get_conv2D_Wmats(tensor: np.ndarray) -> List[np.ndarray]: | |||||||
|     """ |     """ | ||||||
|     mats = [] |     mats = [] | ||||||
|     N, M, imax, jmax = tensor.shape |     N, M, imax, jmax = tensor.shape | ||||||
|   assert N + M >= imax + jmax, 'invalid tensor shape detected: {}x{} (NxM), {}x{} (i,j)'.format(N, M, imax, jmax) |     assert N + M >= imax + jmax, "invalid tensor shape detected: {}x{} (NxM), {}x{} (i,j)".format(N, M, imax, jmax) | ||||||
|     for i in range(imax): |     for i in range(imax): | ||||||
|         for j in range(jmax): |         for j in range(jmax): | ||||||
|             w = tensor[:, :, i, j] |             w = tensor[:, :, i, j] | ||||||
|       if N < M: w = w.T |             if N < M: | ||||||
|  |                 w = w.T | ||||||
|             mats.append(w) |             mats.append(w) | ||||||
|     return mats |     return mats | ||||||
|  |  | ||||||
| @@ -44,8 +45,11 @@ def glorot_norm_check(W, N, M, rf_size, lower=0.5, upper=1.5): | |||||||
|     elif (check1 > lower) & (check1 < upper): |     elif (check1 > lower) & (check1 < upper): | ||||||
|         return check1, True |         return check1, True | ||||||
|     else: |     else: | ||||||
|     if rf_size > 1: return check2, False |         if rf_size > 1: | ||||||
|     else: return check1, False |             return check2, False | ||||||
|  |         else: | ||||||
|  |             return check1, False | ||||||
|  |  | ||||||
|  |  | ||||||
| def glorot_norm_fix(w, n, m, rf_size): | def glorot_norm_fix(w, n, m, rf_size): | ||||||
|     """Apply Glorot Normalization Fix.""" |     """Apply Glorot Normalization Fix.""" | ||||||
| @@ -57,15 +61,16 @@ def glorot_norm_fix(w, n, m, rf_size): | |||||||
| def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix): | def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix): | ||||||
|     results = OrderedDict() |     results = OrderedDict() | ||||||
|     count = len(weights) |     count = len(weights) | ||||||
|   if count == 0: return results |     if count == 0: | ||||||
|  |         return results | ||||||
|  |  | ||||||
|     for i, weight in enumerate(weights): |     for i, weight in enumerate(weights): | ||||||
|         M, N = np.min(weight.shape), np.max(weight.shape) |         M, N = np.min(weight.shape), np.max(weight.shape) | ||||||
|         Q = N / M |         Q = N / M | ||||||
|         results[i] = cur_res = OrderedDict(N=N, M=M, Q=Q) |         results[i] = cur_res = OrderedDict(N=N, M=M, Q=Q) | ||||||
|         check, checkTF = glorot_norm_check(weight, N, M, count) |         check, checkTF = glorot_norm_check(weight, N, M, count) | ||||||
|     cur_res['check'] = check |         cur_res["check"] = check | ||||||
|     cur_res['checkTF'] = checkTF |         cur_res["checkTF"] = checkTF | ||||||
|         # assume receptive field size is count |         # assume receptive field size is count | ||||||
|         if glorot_fix: |         if glorot_fix: | ||||||
|             weight = glorot_norm_fix(weight, N, M, count) |             weight = glorot_norm_fix(weight, N, M, count) | ||||||
| @@ -93,18 +98,23 @@ def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms | |||||||
|             cur_res["summary"] = summary |             cur_res["summary"] = summary | ||||||
|             continue |             continue | ||||||
|         elif max_size > 0 and M > max_size: |         elif max_size > 0 and M > max_size: | ||||||
|       summary = "Weight matrix {}/{} ({},{}): Skipping: too big (testing) (>{})".format(i + 1, count, M, N, max_size) |             summary = "Weight matrix {}/{} ({},{}): Skipping: too big (testing) (>{})".format( | ||||||
|  |                 i + 1, count, M, N, max_size | ||||||
|  |             ) | ||||||
|             cur_res["summary"] = summary |             cur_res["summary"] = summary | ||||||
|             continue |             continue | ||||||
|         else: |         else: | ||||||
|             summary = [] |             summary = [] | ||||||
|         if alphas: |         if alphas: | ||||||
|             import powerlaw |             import powerlaw | ||||||
|  |  | ||||||
|             svd = TruncatedSVD(n_components=M - 1, n_iter=7, random_state=10) |             svd = TruncatedSVD(n_components=M - 1, n_iter=7, random_state=10) | ||||||
|             svd.fit(weight.astype(float)) |             svd.fit(weight.astype(float)) | ||||||
|             sv = svd.singular_values_ |             sv = svd.singular_values_ | ||||||
|       if normalize: evals = sv * sv / N |             if normalize: | ||||||
|       else: evals = sv * sv |                 evals = sv * sv / N | ||||||
|  |             else: | ||||||
|  |                 evals = sv * sv | ||||||
|  |  | ||||||
|             lambda_max = np.max(evals) |             lambda_max = np.max(evals) | ||||||
|             fit = powerlaw.Fit(evals, xmax=lambda_max, verbose=False) |             fit = powerlaw.Fit(evals, xmax=lambda_max, verbose=False) | ||||||
| @@ -123,9 +133,10 @@ def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms | |||||||
|             cur_res["logpnorm"] = logpnorm |             cur_res["logpnorm"] = logpnorm | ||||||
|  |  | ||||||
|             summary.append( |             summary.append( | ||||||
|         "Weight matrix {}/{} ({},{}): Alpha: {}, Alpha Weighted: {}, D: {}, pNorm {}".format(i + 1, count, M, N, alpha, |                 "Weight matrix {}/{} ({},{}): Alpha: {}, Alpha Weighted: {}, D: {}, pNorm {}".format( | ||||||
|                                                                                              alpha_weighted, D, |                     i + 1, count, M, N, alpha, alpha_weighted, D, logpnorm | ||||||
|                                                                                              logpnorm)) |                 ) | ||||||
|  |             ) | ||||||
|  |  | ||||||
|         if lognorms: |         if lognorms: | ||||||
|             norm = np.linalg.norm(weight)  # Frobenius Norm |             norm = np.linalg.norm(weight)  # Frobenius Norm | ||||||
| @@ -134,14 +145,16 @@ def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms | |||||||
|             cur_res["lognorm"] = lognorm |             cur_res["lognorm"] = lognorm | ||||||
|  |  | ||||||
|             X = np.dot(weight.T, weight) |             X = np.dot(weight.T, weight) | ||||||
|       if normalize: X = X / N |             if normalize: | ||||||
|  |                 X = X / N | ||||||
|             normX = np.linalg.norm(X)  # Frobenius Norm |             normX = np.linalg.norm(X)  # Frobenius Norm | ||||||
|             cur_res["normX"] = normX |             cur_res["normX"] = normX | ||||||
|             lognormX = np.log10(normX) |             lognormX = np.log10(normX) | ||||||
|             cur_res["lognormX"] = lognormX |             cur_res["lognormX"] = lognormX | ||||||
|  |  | ||||||
|             summary.append( |             summary.append( | ||||||
|         "Weight matrix {}/{} ({},{}): LogNorm: {} ; LogNormX: {}".format(i + 1, count, M, N, lognorm, lognormX)) |                 "Weight matrix {}/{} ({},{}): LogNorm: {} ; LogNormX: {}".format(i + 1, count, M, N, lognorm, lognormX) | ||||||
|  |             ) | ||||||
|  |  | ||||||
|             if softranks: |             if softranks: | ||||||
|                 softrank = norm ** 2 / sv_max ** 2 |                 softrank = norm ** 2 / sv_max ** 2 | ||||||
| @@ -150,8 +163,9 @@ def analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms | |||||||
|                 cur_res["softrank"] = softrank |                 cur_res["softrank"] = softrank | ||||||
|                 cur_res["softranklog"] = softranklog |                 cur_res["softranklog"] = softranklog | ||||||
|                 cur_res["softranklogratio"] = softranklogratio |                 cur_res["softranklogratio"] = softranklogratio | ||||||
|         summary += "{}. Softrank: {}. Softrank log: {}. Softrank log ratio: {}".format(summary, softrank, softranklog, |                 summary += "{}. Softrank: {}. Softrank log: {}. Softrank log ratio: {}".format( | ||||||
|                                                                                        softranklogratio) |                     summary, softrank, softranklog, softranklogratio | ||||||
|  |                 ) | ||||||
|         cur_res["summary"] = "\n".join(summary) |         cur_res["summary"] = "\n".join(summary) | ||||||
|     return results |     return results | ||||||
|  |  | ||||||
| @@ -181,7 +195,7 @@ def compute_details(results): | |||||||
|         "numofSpikes": "Number of spikes per MP fit", |         "numofSpikes": "Number of spikes per MP fit", | ||||||
|         "ratio_numofSpikes": "aka, percent_mass, Number of spikes / total number of evals", |         "ratio_numofSpikes": "aka, percent_mass, Number of spikes / total number of evals", | ||||||
|         "softrank_mp": "Softrank for MP fit", |         "softrank_mp": "Softrank for MP fit", | ||||||
|     "logpnorm": "alpha pNorm" |         "logpnorm": "alpha pNorm", | ||||||
|     } |     } | ||||||
|  |  | ||||||
|     metrics_stats = [] |     metrics_stats = [] | ||||||
| @@ -194,8 +208,11 @@ def compute_details(results): | |||||||
|         metrics_stats.append("{}_compound_max".format(metric)) |         metrics_stats.append("{}_compound_max".format(metric)) | ||||||
|         metrics_stats.append("{}_compound_avg".format(metric)) |         metrics_stats.append("{}_compound_avg".format(metric)) | ||||||
|  |  | ||||||
|   columns = ["layer_id", "layer_type", "N", "M", "layer_count", "slice", |     columns = ( | ||||||
|              "slice_count", "level", "comment"] + [*metrics] + metrics_stats |         ["layer_id", "layer_type", "N", "M", "layer_count", "slice", "slice_count", "level", "comment"] | ||||||
|  |         + [*metrics] | ||||||
|  |         + metrics_stats | ||||||
|  |     ) | ||||||
|  |  | ||||||
|     metrics_values = {} |     metrics_values = {} | ||||||
|     metrics_values_compound = {} |     metrics_values_compound = {} | ||||||
| @@ -232,8 +249,15 @@ def compute_details(results): | |||||||
|                 M = summary["M"] |                 M = summary["M"] | ||||||
|                 Mtotal += M |                 Mtotal += M | ||||||
|  |  | ||||||
|       data = {"layer_id": layer_id, "layer_type": layer_type, "N": N, "M": M, "slice": slice_id, "level": "SLICE", |             data = { | ||||||
|               "comment": "Slice level"} |                 "layer_id": layer_id, | ||||||
|  |                 "layer_type": layer_type, | ||||||
|  |                 "N": N, | ||||||
|  |                 "M": M, | ||||||
|  |                 "slice": slice_id, | ||||||
|  |                 "level": "SLICE", | ||||||
|  |                 "comment": "Slice level", | ||||||
|  |             } | ||||||
|             for metric in metrics: |             for metric in metrics: | ||||||
|                 if metric in summary: |                 if metric in summary: | ||||||
|                     value = summary[metric] |                     value = summary[metric] | ||||||
| @@ -242,8 +266,15 @@ def compute_details(results): | |||||||
|                         compounds[metric].append(value) |                         compounds[metric].append(value) | ||||||
|                         data[metric] = value |                         data[metric] = value | ||||||
|  |  | ||||||
|     data = {"layer_id": layer_id, "layer_type": layer_type, "N": Ntotal, "M": Mtotal, "slice_count": slice_count, |         data = { | ||||||
|             "level": "LAYER", "comment": "Layer level"} |             "layer_id": layer_id, | ||||||
|  |             "layer_type": layer_type, | ||||||
|  |             "N": Ntotal, | ||||||
|  |             "M": Mtotal, | ||||||
|  |             "slice_count": slice_count, | ||||||
|  |             "level": "LAYER", | ||||||
|  |             "comment": "Layer level", | ||||||
|  |         } | ||||||
|         # Compute the compound value over the slices |         # Compute the compound value over the slices | ||||||
|         for metric, value in compounds.items(): |         for metric, value in compounds.items(): | ||||||
|             count = len(value) |             count = len(value) | ||||||
| @@ -282,9 +313,17 @@ def compute_details(results): | |||||||
|     return final_summary |     return final_summary | ||||||
|  |  | ||||||
|  |  | ||||||
| def analyze(model: nn.Module, min_size=50, max_size=0, | def analyze( | ||||||
|             alphas: bool = False, lognorms: bool = True, spectralnorms: bool = False, |     model: nn.Module, | ||||||
|             softranks: bool = False, normalize: bool = False, glorot_fix: bool = False): |     min_size=50, | ||||||
|  |     max_size=0, | ||||||
|  |     alphas: bool = False, | ||||||
|  |     lognorms: bool = True, | ||||||
|  |     spectralnorms: bool = False, | ||||||
|  |     softranks: bool = False, | ||||||
|  |     normalize: bool = False, | ||||||
|  |     glorot_fix: bool = False, | ||||||
|  | ): | ||||||
|     """ |     """ | ||||||
|     Analyze the weight matrices of a model. |     Analyze the weight matrices of a model. | ||||||
|     :param model: A PyTorch model |     :param model: A PyTorch model | ||||||
| @@ -311,9 +350,11 @@ def analyze(model: nn.Module, min_size=50, max_size=0, | |||||||
|             weights = [module.weight.cpu().detach().numpy()] |             weights = [module.weight.cpu().detach().numpy()] | ||||||
|         else: |         else: | ||||||
|             weights = get_conv2D_Wmats(module.weight.cpu().detach().numpy()) |             weights = get_conv2D_Wmats(module.weight.cpu().detach().numpy()) | ||||||
|     results = analyze_weights(weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix) |         results = analyze_weights( | ||||||
|     results['id'] = index |             weights, min_size, max_size, alphas, lognorms, spectralnorms, softranks, normalize, glorot_fix | ||||||
|     results['type'] = type(module) |         ) | ||||||
|  |         results["id"] = index | ||||||
|  |         results["type"] = type(module) | ||||||
|         all_results[index] = results |         all_results[index] = results | ||||||
|     summary = compute_details(all_results) |     summary = compute_details(all_results) | ||||||
|     return all_results, summary |     return all_results, summary | ||||||
		Reference in New Issue
	
	Block a user