update TF models (beta version)
This commit is contained in:
		
							
								
								
									
										7
									
								
								configs/archs/CIFAR-SIM05.config
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										7
									
								
								configs/archs/CIFAR-SIM05.config
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,7 @@ | |||||||
|  | { | ||||||
|  |   "dataset"   : ["str",  "cifar"], | ||||||
|  |   "arch"      : ["str",  "simres"], | ||||||
|  |   "depth"     : ["int",   5], | ||||||
|  |   "super_type": ["str" , "basic"], | ||||||
|  |   "zero_init_residual" : ["bool",  "0"] | ||||||
|  | } | ||||||
							
								
								
									
										144
									
								
								exps-tf/GDAS.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										144
									
								
								exps-tf/GDAS.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,144 @@ | |||||||
|  | # CUDA_VISIBLE_DEVICES=0 python exps-tf/GDAS.py | ||||||
|  | import os, sys, time, random, argparse | ||||||
|  | import tensorflow as tf | ||||||
|  | from pathlib import Path | ||||||
|  |  | ||||||
|  | lib_dir = (Path(__file__).parent / '..' / 'lib').resolve() | ||||||
|  | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
|  |  | ||||||
|  | # self-lib | ||||||
|  | from tf_models import get_cell_based_tiny_net | ||||||
|  | from tf_optimizers import SGDW, AdamW | ||||||
|  | from config_utils import dict2config | ||||||
|  | from log_utils import time_string | ||||||
|  | from models import CellStructure | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def pre_process(image_a, label_a, image_b, label_b): | ||||||
|  |   def standard_func(image): | ||||||
|  |     x = tf.pad(image, [[4, 4], [4, 4], [0, 0]]) | ||||||
|  |     x = tf.image.random_crop(x, [32, 32, 3]) | ||||||
|  |     x = tf.image.random_flip_left_right(x) | ||||||
|  |     return x | ||||||
|  |   return standard_func(image_a), label_a, standard_func(image_b), label_b | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def main(xargs): | ||||||
|  |   cifar10 = tf.keras.datasets.cifar10 | ||||||
|  |  | ||||||
|  |   (x_train, y_train), (x_test, y_test) = cifar10.load_data() | ||||||
|  |   x_train, x_test = x_train / 255.0, x_test / 255.0 | ||||||
|  |   x_train, x_test = x_train.astype('float32'), x_test.astype('float32') | ||||||
|  |  | ||||||
|  |   # Add a channels dimension | ||||||
|  |   all_indexes = list(range(x_train.shape[0])) | ||||||
|  |   random.shuffle(all_indexes) | ||||||
|  |   s_train_idxs, s_valid_idxs = all_indexes[::2], all_indexes[1::2] | ||||||
|  |   search_train_x, search_train_y = x_train[s_train_idxs], y_train[s_train_idxs] | ||||||
|  |   search_valid_x, search_valid_y = x_train[s_valid_idxs], y_train[s_valid_idxs] | ||||||
|  |   #x_train, x_test = x_train[..., tf.newaxis], x_test[..., tf.newaxis] | ||||||
|  |    | ||||||
|  |   # Use tf.data | ||||||
|  |   #train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(64) | ||||||
|  |   search_ds = tf.data.Dataset.from_tensor_slices((search_train_x, search_train_y, search_valid_x, search_valid_y)) | ||||||
|  |   search_ds = search_ds.map(pre_process).shuffle(1000).batch(64) | ||||||
|  |  | ||||||
|  |   test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32) | ||||||
|  |  | ||||||
|  |   # Create an instance of the model | ||||||
|  |   config = dict2config({'name': 'GDAS', | ||||||
|  |                         'C'   : xargs.channel, 'N': xargs.num_cells, 'max_nodes': xargs.max_nodes, | ||||||
|  |                         'num_classes': 10, 'space': 'nas-bench-102', 'affine': True}, None) | ||||||
|  |   model = get_cell_based_tiny_net(config) | ||||||
|  |   #import pdb; pdb.set_trace() | ||||||
|  |   #model.build(((64, 32, 32, 3), (1,))) | ||||||
|  |   #for x in model.trainable_variables: | ||||||
|  |   #  print('{:30s} : {:}'.format(x.name, x.shape)) | ||||||
|  |   # Choose optimizer | ||||||
|  |   loss_object = tf.keras.losses.SparseCategoricalCrossentropy() | ||||||
|  |   w_optimizer = SGDW(learning_rate=xargs.w_lr, weight_decay=xargs.w_weight_decay, momentum=xargs.w_momentum, nesterov=True) | ||||||
|  |   a_optimizer = AdamW(learning_rate=xargs.arch_learning_rate, weight_decay=xargs.arch_weight_decay, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||||
|  |   #w_optimizer = tf.keras.optimizers.SGD(learning_rate=0.025, momentum=0.9, nesterov=True) | ||||||
|  |   #a_optimizer = tf.keras.optimizers.AdamW(learning_rate=xargs.arch_learning_rate, beta_1=0.5, beta_2=0.999, epsilon=1e-07) | ||||||
|  |   #### | ||||||
|  |   # metrics | ||||||
|  |   train_loss = tf.keras.metrics.Mean(name='train_loss') | ||||||
|  |   train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') | ||||||
|  |   valid_loss = tf.keras.metrics.Mean(name='valid_loss') | ||||||
|  |   valid_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='valid_accuracy') | ||||||
|  |   test_loss = tf.keras.metrics.Mean(name='test_loss') | ||||||
|  |   test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') | ||||||
|  |    | ||||||
|  |   @tf.function | ||||||
|  |   def search_step(train_images, train_labels, valid_images, valid_labels, tf_tau): | ||||||
|  |     # optimize weights | ||||||
|  |     with tf.GradientTape() as tape: | ||||||
|  |       predictions = model(train_images, tf_tau, True) | ||||||
|  |       w_loss = loss_object(train_labels, predictions) | ||||||
|  |     net_w_param = model.get_weights() | ||||||
|  |     gradients = tape.gradient(w_loss, net_w_param) | ||||||
|  |     w_optimizer.apply_gradients(zip(gradients, net_w_param)) | ||||||
|  |     train_loss(w_loss) | ||||||
|  |     train_accuracy(train_labels, predictions) | ||||||
|  |     # optimize alphas | ||||||
|  |     with tf.GradientTape() as tape: | ||||||
|  |       predictions = model(valid_images, tf_tau, True) | ||||||
|  |       a_loss = loss_object(valid_labels, predictions) | ||||||
|  |     net_a_param = model.get_alphas() | ||||||
|  |     gradients = tape.gradient(a_loss, net_a_param) | ||||||
|  |     a_optimizer.apply_gradients(zip(gradients, net_a_param)) | ||||||
|  |     valid_loss(a_loss) | ||||||
|  |     valid_accuracy(valid_labels, predictions) | ||||||
|  |  | ||||||
|  |   # TEST | ||||||
|  |   @tf.function | ||||||
|  |   def test_step(images, labels): | ||||||
|  |     predictions = model(images) | ||||||
|  |     t_loss = loss_object(labels, predictions) | ||||||
|  |  | ||||||
|  |     test_loss(t_loss) | ||||||
|  |     test_accuracy(labels, predictions) | ||||||
|  |  | ||||||
|  |   print('{:} start searching with {:} epochs ({:} batches per epoch).'.format(time_string(), xargs.epochs, tf.data.experimental.cardinality(search_ds).numpy())) | ||||||
|  |  | ||||||
|  |   for epoch in range(xargs.epochs): | ||||||
|  |     # Reset the metrics at the start of the next epoch | ||||||
|  |     train_loss.reset_states() ; train_accuracy.reset_states() | ||||||
|  |     test_loss.reset_states()  ; test_accuracy.reset_states() | ||||||
|  |     cur_tau = xargs.tau_max - (xargs.tau_max-xargs.tau_min) * epoch / (xargs.epochs-1) | ||||||
|  |     tf_tau  = tf.cast(cur_tau, dtype=tf.float32, name='tau') | ||||||
|  |  | ||||||
|  |     for trn_imgs, trn_labels, val_imgs, val_labels in search_ds: | ||||||
|  |       search_step(trn_imgs, trn_labels, val_imgs, val_labels, tf_tau) | ||||||
|  |     genotype = model.genotype() | ||||||
|  |     genotype = CellStructure(genotype) | ||||||
|  |  | ||||||
|  |     #for test_images, test_labels in test_ds: | ||||||
|  |     #  test_step(test_images, test_labels) | ||||||
|  |  | ||||||
|  |     template = '{:} Epoch {:03d}/{:03d}, Train-Loss: {:.3f}, Train-Accuracy: {:.2f}%, Valid-Loss: {:.3f}, Valid-Accuracy: {:.2f}% | tau={:.3f}' | ||||||
|  |     print(template.format(time_string(), epoch+1, xargs.epochs, | ||||||
|  |                           train_loss.result(), | ||||||
|  |                           train_accuracy.result()*100, | ||||||
|  |                           valid_loss.result(), | ||||||
|  |                           valid_accuracy.result()*100, | ||||||
|  |                           cur_tau)) | ||||||
|  |     print('{:} genotype : {:}\n{:}\n'.format(time_string(), genotype, model.get_np_alphas())) | ||||||
|  |  | ||||||
|  | if __name__ == '__main__': | ||||||
|  |   parser = argparse.ArgumentParser(description='NAS-Bench-102', formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||||||
|  |   # training details | ||||||
|  |   parser.add_argument('--epochs'            , type=int  ,   default= 250  ,   help='') | ||||||
|  |   parser.add_argument('--tau_max'           , type=float,   default= 10   ,   help='') | ||||||
|  |   parser.add_argument('--tau_min'           , type=float,   default= 0.1  ,   help='') | ||||||
|  |   parser.add_argument('--w_lr'              , type=float,   default= 0.025,   help='') | ||||||
|  |   parser.add_argument('--w_weight_decay'    , type=float,   default=0.0005,   help='') | ||||||
|  |   parser.add_argument('--w_momentum'        , type=float,   default= 0.9  ,   help='') | ||||||
|  |   parser.add_argument('--arch_learning_rate', type=float,   default=0.0003,   help='') | ||||||
|  |   parser.add_argument('--arch_weight_decay' , type=float,   default=0.001,    help='') | ||||||
|  |   # marco structure | ||||||
|  |   parser.add_argument('--channel'           , type=int  ,   default=16,       help='') | ||||||
|  |   parser.add_argument('--num_cells'         , type=int  ,   default= 5,       help='') | ||||||
|  |   parser.add_argument('--max_nodes'         , type=int  ,   default= 4,       help='') | ||||||
|  |   args = parser.parse_args() | ||||||
|  |   main( args ) | ||||||
| @@ -6,7 +6,6 @@ import numpy as np | |||||||
| from collections import OrderedDict | from collections import OrderedDict | ||||||
| lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | lib_dir = (Path(__file__).parent / '..' / '..' / 'lib').resolve() | ||||||
| if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | if str(lib_dir) not in sys.path: sys.path.insert(0, str(lib_dir)) | ||||||
| from graphviz import Digraph |  | ||||||
|  |  | ||||||
|  |  | ||||||
| def test_nas_api(): | def test_nas_api(): | ||||||
| @@ -29,6 +28,7 @@ OPS    = ['skip-connect', 'conv-1x1', 'conv-3x3', 'pool-3x3'] | |||||||
| COLORS = ['chartreuse'  , 'cyan'    , 'navyblue', 'chocolate1'] | COLORS = ['chartreuse'  , 'cyan'    , 'navyblue', 'chocolate1'] | ||||||
|  |  | ||||||
| def plot(filename): | def plot(filename): | ||||||
|  |   from graphviz import Digraph | ||||||
|   g = Digraph( |   g = Digraph( | ||||||
|       format='png', |       format='png', | ||||||
|       edge_attr=dict(fontsize='20', fontname="times"), |       edge_attr=dict(fontsize='20', fontname="times"), | ||||||
| @@ -53,6 +53,26 @@ def plot(filename): | |||||||
|   g.render(filename, cleanup=True, view=False) |   g.render(filename, cleanup=True, view=False) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def test_auto_grad(): | ||||||
|  |   class Net(torch.nn.Module): | ||||||
|  |     def __init__(self, iS): | ||||||
|  |       super(Net, self).__init__() | ||||||
|  |       self.layer = torch.nn.Linear(iS, 1) | ||||||
|  |     def forward(self, inputs): | ||||||
|  |       outputs = self.layer(inputs) | ||||||
|  |       outputs = torch.exp(outputs) | ||||||
|  |       return outputs.mean() | ||||||
|  |   net = Net(10) | ||||||
|  |   inputs = torch.rand(256, 10) | ||||||
|  |   loss = net(inputs) | ||||||
|  |   first_order_grads = torch.autograd.grad(loss, net.parameters(), retain_graph=True, create_graph=True) | ||||||
|  |   first_order_grads = torch.cat([x.view(-1) for x in first_order_grads]) | ||||||
|  |   second_order_grads = [] | ||||||
|  |   for grads in  first_order_grads: | ||||||
|  |     s_grads = torch.autograd.grad(grads, net.parameters()) | ||||||
|  |     second_order_grads.append( s_grads ) | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|   test_nas_api() |   #test_nas_api() | ||||||
|   for i in range(200): plot('{:04d}'.format(i)) |   #for i in range(200): plot('{:04d}'.format(i)) | ||||||
|  |   test_auto_grad() | ||||||
|   | |||||||
| @@ -1,7 +1,8 @@ | |||||||
| ################################################## | ################################################## | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
| ################################################## | ################################################## | ||||||
| from .logger       import Logger | # every package does not rely on pytorch or tensorflow | ||||||
| from .print_logger import PrintLogger | # I tried to list all dependency here: os, sys, time, numpy, (possibly) matplotlib | ||||||
|  | from .logger       import Logger, PrintLogger | ||||||
| from .meter        import AverageMeter | from .meter        import AverageMeter | ||||||
| from .time_utils   import time_for_file, time_string, time_string_short, time_print, convert_size2str, convert_secs2time | from .time_utils   import time_for_file, time_string, time_string_short, time_print, convert_secs2time | ||||||
|   | |||||||
| @@ -1,9 +1,6 @@ | |||||||
| # Copyright (c) Facebook, Inc. and its affiliates. | ################################################## | ||||||
| # All rights reserved. | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
| # | ################################################## | ||||||
| # This source code is licensed under the license found in the |  | ||||||
| # LICENSE file in the root directory of this source tree. |  | ||||||
| # |  | ||||||
| from pathlib import Path | from pathlib import Path | ||||||
| import importlib, warnings | import importlib, warnings | ||||||
| import os, sys, time, numpy as np | import os, sys, time, numpy as np | ||||||
| @@ -16,6 +13,19 @@ if importlib.util.find_spec('tensorflow'): | |||||||
|   import tensorflow as tf |   import tensorflow as tf | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class PrintLogger(object): | ||||||
|  |    | ||||||
|  |   def __init__(self): | ||||||
|  |     """Create a summary writer logging to log_dir.""" | ||||||
|  |     self.name = 'PrintLogger' | ||||||
|  |  | ||||||
|  |   def log(self, string): | ||||||
|  |     print (string) | ||||||
|  |  | ||||||
|  |   def close(self): | ||||||
|  |     print ('-'*30 + ' close printer ' + '-'*30) | ||||||
|  |  | ||||||
|  |  | ||||||
| class Logger(object): | class Logger(object): | ||||||
|    |    | ||||||
|   def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False): |   def __init__(self, log_dir, seed, create_model_dir=True, use_tf=False): | ||||||
|   | |||||||
| @@ -1,4 +1,3 @@ | |||||||
| import time, sys |  | ||||||
| import numpy as np | import numpy as np | ||||||
|  |  | ||||||
|  |  | ||||||
|   | |||||||
| @@ -1,14 +0,0 @@ | |||||||
| import os, sys, time |  | ||||||
|  |  | ||||||
|  |  | ||||||
| class PrintLogger(object): |  | ||||||
|    |  | ||||||
|   def __init__(self): |  | ||||||
|     """Create a summary writer logging to log_dir.""" |  | ||||||
|     self.name = 'PrintLogger' |  | ||||||
|  |  | ||||||
|   def log(self, string): |  | ||||||
|     print (string) |  | ||||||
|  |  | ||||||
|   def close(self): |  | ||||||
|     print ('-'*30 + ' close printer ' + '-'*30) |  | ||||||
| @@ -1,37 +1,27 @@ | |||||||
| # Copyright (c) Facebook, Inc. and its affiliates. | ################################################## | ||||||
| # All rights reserved. | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
| # | ################################################## | ||||||
| # This source code is licensed under the license found in the |  | ||||||
| # LICENSE file in the root directory of this source tree. |  | ||||||
| # |  | ||||||
| import time, sys | import time, sys | ||||||
| import numpy as np | import numpy as np | ||||||
|  |  | ||||||
| def time_for_file(): | def time_for_file(): | ||||||
|   ISOTIMEFORMAT='%d-%h-at-%H-%M-%S' |   ISOTIMEFORMAT='%d-%h-at-%H-%M-%S' | ||||||
|   return '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) |   return '{:}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) | ||||||
|  |  | ||||||
| def time_string(): | def time_string(): | ||||||
|   ISOTIMEFORMAT='%Y-%m-%d %X' |   ISOTIMEFORMAT='%Y-%m-%d %X' | ||||||
|   string = '[{}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) |   string = '[{:}]'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) | ||||||
|   return string |   return string | ||||||
|  |  | ||||||
| def time_string_short(): | def time_string_short(): | ||||||
|   ISOTIMEFORMAT='%Y%m%d' |   ISOTIMEFORMAT='%Y%m%d' | ||||||
|   string = '{}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) |   string = '{:}'.format(time.strftime( ISOTIMEFORMAT, time.gmtime(time.time()) )) | ||||||
|   return string |   return string | ||||||
|  |  | ||||||
| def time_print(string, is_print=True): | def time_print(string, is_print=True): | ||||||
|   if (is_print): |   if (is_print): | ||||||
|     print('{} : {}'.format(time_string(), string)) |     print('{} : {}'.format(time_string(), string)) | ||||||
|  |  | ||||||
| def convert_size2str(torch_size): |  | ||||||
|   dims = len(torch_size) |  | ||||||
|   string = '[' |  | ||||||
|   for idim in range(dims): |  | ||||||
|     string = string + ' {}'.format(torch_size[idim]) |  | ||||||
|   return string + ']' |  | ||||||
|    |  | ||||||
| def convert_secs2time(epoch_time, return_str=False):     | def convert_secs2time(epoch_time, return_str=False):     | ||||||
|   need_hour = int(epoch_time / 3600) |   need_hour = int(epoch_time / 3600) | ||||||
|   need_mins = int((epoch_time - 3600*need_hour) / 60)   |   need_mins = int((epoch_time - 3600*need_hour) / 60)   | ||||||
|   | |||||||
| @@ -1,7 +1,6 @@ | |||||||
| ################################################## | ################################################## | ||||||
| # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
| ################################################## | ################################################## | ||||||
| import torch |  | ||||||
| from os import path as osp | from os import path as osp | ||||||
|  |  | ||||||
| __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \ | __all__ = ['change_key', 'get_cell_based_tiny_net', 'get_search_spaces', 'get_cifar_models', 'get_imagenet_models', \ | ||||||
| @@ -126,6 +125,11 @@ def obtain_search_model(config): | |||||||
|       elif config.search_mode == 'shape': |       elif config.search_mode == 'shape': | ||||||
|         return SearchShapeCifarResNet(config.module, config.depth, config.class_num) |         return SearchShapeCifarResNet(config.module, config.depth, config.class_num) | ||||||
|       else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) |       else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) | ||||||
|  |     elif config.arch == 'simres': | ||||||
|  |       from .shape_searchs import SearchWidthSimResNet | ||||||
|  |       if config.search_mode == 'width': | ||||||
|  |         return SearchWidthSimResNet(config.depth, config.class_num) | ||||||
|  |       else: raise ValueError('invalid search mode : {:}'.format(config.search_mode)) | ||||||
|     else: |     else: | ||||||
|       raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset)) |       raise ValueError('invalid arch : {:} for dataset [{:}]'.format(config.arch, config.dataset)) | ||||||
|   elif config.dataset == 'imagenet': |   elif config.dataset == 'imagenet': | ||||||
| @@ -140,6 +144,7 @@ def obtain_search_model(config): | |||||||
|  |  | ||||||
|  |  | ||||||
| def load_net_from_checkpoint(checkpoint): | def load_net_from_checkpoint(checkpoint): | ||||||
|  |   import torch | ||||||
|   assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint) |   assert osp.isfile(checkpoint), 'checkpoint {:} does not exist'.format(checkpoint) | ||||||
|   checkpoint   = torch.load(checkpoint) |   checkpoint   = torch.load(checkpoint) | ||||||
|   model_config = dict2config(checkpoint['model-config'], None) |   model_config = dict2config(checkpoint['model-config'], None) | ||||||
|   | |||||||
							
								
								
									
										316
									
								
								lib/models/shape_searchs/SearchSimResNet_width.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										316
									
								
								lib/models/shape_searchs/SearchSimResNet_width.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,316 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
|  | ################################################## | ||||||
|  | import math, torch | ||||||
|  | import torch.nn as nn | ||||||
|  | from ..initialization import initialize_resnet | ||||||
|  | from ..SharedUtils    import additive_func | ||||||
|  | from .SoftSelect      import select2withP, ChannelWiseInter | ||||||
|  | from .SoftSelect      import linear_forward | ||||||
|  | from .SoftSelect      import get_width_choices as get_choices | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def conv_forward(inputs, conv, choices): | ||||||
|  |   iC = conv.in_channels | ||||||
|  |   fill_size = list(inputs.size()) | ||||||
|  |   fill_size[1] = iC - fill_size[1] | ||||||
|  |   filled  = torch.zeros(fill_size, device=inputs.device) | ||||||
|  |   xinputs = torch.cat((inputs, filled), dim=1) | ||||||
|  |   outputs = conv(xinputs) | ||||||
|  |   selecteds = [outputs[:,:oC] for oC in choices] | ||||||
|  |   return selecteds | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class ConvBNReLU(nn.Module): | ||||||
|  |   num_conv  = 1 | ||||||
|  |   def __init__(self, nIn, nOut, kernel, stride, padding, bias, has_avg, has_bn, has_relu): | ||||||
|  |     super(ConvBNReLU, self).__init__() | ||||||
|  |     self.InShape  = None | ||||||
|  |     self.OutShape = None | ||||||
|  |     self.choices  = get_choices(nOut) | ||||||
|  |     self.register_buffer('choices_tensor', torch.Tensor( self.choices )) | ||||||
|  |  | ||||||
|  |     if has_avg : self.avg = nn.AvgPool2d(kernel_size=2, stride=2, padding=0) | ||||||
|  |     else       : self.avg = None | ||||||
|  |     self.conv = nn.Conv2d(nIn, nOut, kernel_size=kernel, stride=stride, padding=padding, dilation=1, groups=1, bias=bias) | ||||||
|  |     #if has_bn  : self.bn  = nn.BatchNorm2d(nOut) | ||||||
|  |     #else       : self.bn  = None | ||||||
|  |     self.has_bn = has_bn | ||||||
|  |     self.BNs  = nn.ModuleList() | ||||||
|  |     for i, _out in enumerate(self.choices): | ||||||
|  |       self.BNs.append(nn.BatchNorm2d(_out)) | ||||||
|  |     if has_relu: self.relu = nn.ReLU(inplace=True) | ||||||
|  |     else       : self.relu = None | ||||||
|  |     self.in_dim   = nIn | ||||||
|  |     self.out_dim  = nOut | ||||||
|  |     self.search_mode = 'basic' | ||||||
|  |  | ||||||
|  |   def get_flops(self, channels, check_range=True, divide=1): | ||||||
|  |     iC, oC = channels | ||||||
|  |     if check_range: assert iC <= self.conv.in_channels and oC <= self.conv.out_channels, '{:} vs {:}  |  {:} vs {:}'.format(iC, self.conv.in_channels, oC, self.conv.out_channels) | ||||||
|  |     assert isinstance(self.InShape, tuple) and len(self.InShape) == 2, 'invalid in-shape : {:}'.format(self.InShape) | ||||||
|  |     assert isinstance(self.OutShape, tuple) and len(self.OutShape) == 2, 'invalid out-shape : {:}'.format(self.OutShape) | ||||||
|  |     #conv_per_position_flops = self.conv.kernel_size[0] * self.conv.kernel_size[1] * iC * oC / self.conv.groups | ||||||
|  |     conv_per_position_flops = (self.conv.kernel_size[0] * self.conv.kernel_size[1] * 1.0 / self.conv.groups) | ||||||
|  |     all_positions = self.OutShape[0] * self.OutShape[1] | ||||||
|  |     flops = (conv_per_position_flops * all_positions / divide) * iC * oC | ||||||
|  |     if self.conv.bias is not None: flops += all_positions / divide | ||||||
|  |     return flops | ||||||
|  |  | ||||||
|  |   def get_range(self): | ||||||
|  |     return [self.choices] | ||||||
|  |  | ||||||
|  |   def forward(self, inputs): | ||||||
|  |     if self.search_mode == 'basic': | ||||||
|  |       return self.basic_forward(inputs) | ||||||
|  |     elif self.search_mode == 'search': | ||||||
|  |       return self.search_forward(inputs) | ||||||
|  |     else: | ||||||
|  |       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||||
|  |  | ||||||
|  |   def search_forward(self, tuple_inputs): | ||||||
|  |     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||||
|  |     inputs, expected_inC, probability, index, prob = tuple_inputs | ||||||
|  |     index, prob = torch.squeeze(index).tolist(), torch.squeeze(prob) | ||||||
|  |     probability = torch.squeeze(probability) | ||||||
|  |     assert len(index) == 2, 'invalid length : {:}'.format(index) | ||||||
|  |     # compute expected flop | ||||||
|  |     #coordinates   = torch.arange(self.x_range[0], self.x_range[1]+1).type_as(probability) | ||||||
|  |     expected_outC = (self.choices_tensor * probability).sum() | ||||||
|  |     expected_flop = self.get_flops([expected_inC, expected_outC], False, 1e6) | ||||||
|  |     if self.avg : out = self.avg( inputs ) | ||||||
|  |     else        : out = inputs | ||||||
|  |     # convolutional layer | ||||||
|  |     out_convs = conv_forward(out, self.conv, [self.choices[i] for i in index]) | ||||||
|  |     out_bns   = [self.BNs[idx](out_conv) for idx, out_conv in zip(index, out_convs)] | ||||||
|  |     # merge | ||||||
|  |     out_channel = max([x.size(1) for x in out_bns]) | ||||||
|  |     outA = ChannelWiseInter(out_bns[0], out_channel) | ||||||
|  |     outB = ChannelWiseInter(out_bns[1], out_channel) | ||||||
|  |     out  = outA * prob[0] + outB * prob[1] | ||||||
|  |     #out = additive_func(out_bns[0]*prob[0], out_bns[1]*prob[1]) | ||||||
|  |  | ||||||
|  |     if self.relu: out = self.relu( out ) | ||||||
|  |     else        : out = out | ||||||
|  |     return out, expected_outC, expected_flop | ||||||
|  |  | ||||||
|  |   def basic_forward(self, inputs): | ||||||
|  |     if self.avg : out = self.avg( inputs ) | ||||||
|  |     else        : out = inputs | ||||||
|  |     conv = self.conv( out ) | ||||||
|  |     if self.has_bn:out= self.BNs[-1]( conv ) | ||||||
|  |     else        : out = conv | ||||||
|  |     if self.relu: out = self.relu( out ) | ||||||
|  |     else        : out = out | ||||||
|  |     if self.InShape is None: | ||||||
|  |       self.InShape  = (inputs.size(-2), inputs.size(-1)) | ||||||
|  |       self.OutShape = (out.size(-2)   , out.size(-1)) | ||||||
|  |     return out | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SimBlock(nn.Module): | ||||||
|  |   expansion = 1 | ||||||
|  |   num_conv  = 1 | ||||||
|  |   def __init__(self, inplanes, planes, stride): | ||||||
|  |     super(SimBlock, self).__init__() | ||||||
|  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||||
|  |     self.conv = ConvBNReLU(inplanes, planes, 3, stride, 1, False, has_avg=False, has_bn=True, has_relu=True) | ||||||
|  |     if stride == 2: | ||||||
|  |       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=True, has_bn=False, has_relu=False) | ||||||
|  |     elif inplanes != planes: | ||||||
|  |       self.downsample = ConvBNReLU(inplanes, planes, 1, 1, 0, False, has_avg=False,has_bn=True , has_relu=False) | ||||||
|  |     else: | ||||||
|  |       self.downsample = None | ||||||
|  |     self.out_dim     = planes | ||||||
|  |     self.search_mode = 'basic' | ||||||
|  |  | ||||||
|  |   def get_range(self): | ||||||
|  |     return self.conv.get_range() | ||||||
|  |  | ||||||
|  |   def get_flops(self, channels): | ||||||
|  |     assert len(channels) == 2, 'invalid channels : {:}'.format(channels) | ||||||
|  |     flop_A = self.conv.get_flops([channels[0], channels[1]]) | ||||||
|  |     if hasattr(self.downsample, 'get_flops'): | ||||||
|  |       flop_C = self.downsample.get_flops([channels[0], channels[-1]]) | ||||||
|  |     else: | ||||||
|  |       flop_C = 0 | ||||||
|  |     if channels[0] != channels[-1] and self.downsample is None: # this short-cut will be added during the infer-train | ||||||
|  |       flop_C = channels[0] * channels[-1] * self.conv.OutShape[0] * self.conv.OutShape[1] | ||||||
|  |     return flop_A + flop_C | ||||||
|  |  | ||||||
|  |   def forward(self, inputs): | ||||||
|  |     if self.search_mode == 'basic'   : return self.basic_forward(inputs) | ||||||
|  |     elif self.search_mode == 'search': return self.search_forward(inputs) | ||||||
|  |     else: raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||||
|  |  | ||||||
|  |   def search_forward(self, tuple_inputs): | ||||||
|  |     assert isinstance(tuple_inputs, tuple) and len(tuple_inputs) == 5, 'invalid type input : {:}'.format( type(tuple_inputs) ) | ||||||
|  |     inputs, expected_inC, probability, indexes, probs = tuple_inputs | ||||||
|  |     assert indexes.size(0) == 1 and probs.size(0) == 1 and probability.size(0) == 1, 'invalid size : {:}, {:}, {:}'.format(indexes.size(), probs.size(), probability.size()) | ||||||
|  |     out, expected_next_inC, expected_flop = self.conv( (inputs, expected_inC  , probability[0], indexes[0], probs[0]) ) | ||||||
|  |     if self.downsample is not None: | ||||||
|  |       residual, _, expected_flop_c = self.downsample( (inputs, expected_inC  , probability[-1], indexes[-1], probs[-1]) ) | ||||||
|  |     else: | ||||||
|  |       residual, expected_flop_c = inputs, 0 | ||||||
|  |     out = additive_func(residual, out) | ||||||
|  |     return out, expected_next_inC, sum([expected_flop, expected_flop_c]) | ||||||
|  |  | ||||||
|  |   def basic_forward(self, inputs): | ||||||
|  |     basicblock = self.conv(inputs) | ||||||
|  |     if self.downsample is not None: residual = self.downsample(inputs) | ||||||
|  |     else                          : residual = inputs | ||||||
|  |     out = additive_func(residual, basicblock) | ||||||
|  |     return nn.functional.relu(out, inplace=True) | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SearchWidthSimResNet(nn.Module): | ||||||
|  |  | ||||||
|  |   def __init__(self, depth, num_classes): | ||||||
|  |     super(SearchWidthSimResNet, self).__init__() | ||||||
|  |  | ||||||
|  |     assert (depth - 2) % 3 == 0, 'depth should be one of 5, 8, 11, 14, ... instead of {:}'.format(depth) | ||||||
|  |     layer_blocks = (depth - 2) // 3 | ||||||
|  |     self.message     = 'SearchWidthSimResNet : Depth : {:} , Layers for each block : {:}'.format(depth, layer_blocks) | ||||||
|  |     self.num_classes = num_classes | ||||||
|  |     self.channels    = [16] | ||||||
|  |     self.layers      = nn.ModuleList( [ ConvBNReLU(3, 16, 3, 1, 1, False, has_avg=False, has_bn=True, has_relu=True) ] ) | ||||||
|  |     self.InShape     = None | ||||||
|  |     for stage in range(3): | ||||||
|  |       for iL in range(layer_blocks): | ||||||
|  |         iC     = self.channels[-1] | ||||||
|  |         planes = 16 * (2**stage) | ||||||
|  |         stride = 2 if stage > 0 and iL == 0 else 1 | ||||||
|  |         module = SimBlock(iC, planes, stride) | ||||||
|  |         self.channels.append( module.out_dim ) | ||||||
|  |         self.layers.append  ( module ) | ||||||
|  |         self.message += "\nstage={:}, ilayer={:02d}/{:02d}, block={:03d}, iC={:3d}, oC={:3d}, stride={:}".format(stage, iL, layer_blocks, len(self.layers)-1, iC, module.out_dim, stride) | ||||||
|  |    | ||||||
|  |     self.avgpool     = nn.AvgPool2d(8) | ||||||
|  |     self.classifier  = nn.Linear(module.out_dim, num_classes) | ||||||
|  |     self.InShape     = None | ||||||
|  |     self.tau         = -1 | ||||||
|  |     self.search_mode = 'basic' | ||||||
|  |     #assert sum(x.num_conv for x in self.layers) + 1 == depth, 'invalid depth check {:} vs {:}'.format(sum(x.num_conv for x in self.layers)+1, depth) | ||||||
|  |      | ||||||
|  |     # parameters for width | ||||||
|  |     self.Ranges = [] | ||||||
|  |     self.layer2indexRange = [] | ||||||
|  |     for i, layer in enumerate(self.layers): | ||||||
|  |       start_index = len(self.Ranges) | ||||||
|  |       self.Ranges += layer.get_range() | ||||||
|  |       self.layer2indexRange.append( (start_index, len(self.Ranges)) ) | ||||||
|  |     assert len(self.Ranges) + 1 == depth, 'invalid depth check {:} vs {:}'.format(len(self.Ranges) + 1, depth) | ||||||
|  |  | ||||||
|  |     self.register_parameter('width_attentions', nn.Parameter(torch.Tensor(len(self.Ranges), get_choices(None)))) | ||||||
|  |     nn.init.normal_(self.width_attentions, 0, 0.01) | ||||||
|  |     self.apply(initialize_resnet) | ||||||
|  |  | ||||||
|  |   def arch_parameters(self): | ||||||
|  |     return [self.width_attentions] | ||||||
|  |  | ||||||
|  |   def base_parameters(self): | ||||||
|  |     return list(self.layers.parameters()) + list(self.avgpool.parameters()) + list(self.classifier.parameters()) | ||||||
|  |  | ||||||
|  |   def get_flop(self, mode, config_dict, extra_info): | ||||||
|  |     if config_dict is not None: config_dict = config_dict.copy() | ||||||
|  |     #weights = [F.softmax(x, dim=0) for x in self.width_attentions] | ||||||
|  |     channels = [3] | ||||||
|  |     for i, weight in enumerate(self.width_attentions): | ||||||
|  |       if mode == 'genotype': | ||||||
|  |         with torch.no_grad(): | ||||||
|  |           probe = nn.functional.softmax(weight, dim=0) | ||||||
|  |           C = self.Ranges[i][ torch.argmax(probe).item() ] | ||||||
|  |       elif mode == 'max': | ||||||
|  |         C = self.Ranges[i][-1] | ||||||
|  |       elif mode == 'fix': | ||||||
|  |         C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||||
|  |       elif mode == 'random': | ||||||
|  |         assert isinstance(extra_info, float), 'invalid extra_info : {:}'.format(extra_info) | ||||||
|  |         with torch.no_grad(): | ||||||
|  |           prob = nn.functional.softmax(weight, dim=0) | ||||||
|  |           approximate_C = int( math.sqrt( extra_info ) * self.Ranges[i][-1] ) | ||||||
|  |           for j in range(prob.size(0)): | ||||||
|  |             prob[j] = 1 / (abs(j - (approximate_C-self.Ranges[i][j])) + 0.2) | ||||||
|  |           C = self.Ranges[i][ torch.multinomial(prob, 1, False).item() ] | ||||||
|  |       else: | ||||||
|  |         raise ValueError('invalid mode : {:}'.format(mode)) | ||||||
|  |       channels.append( C ) | ||||||
|  |     flop = 0 | ||||||
|  |     for i, layer in enumerate(self.layers): | ||||||
|  |       s, e = self.layer2indexRange[i] | ||||||
|  |       xchl = tuple( channels[s:e+1] ) | ||||||
|  |       flop+= layer.get_flops(xchl) | ||||||
|  |     # the last fc layer | ||||||
|  |     flop += channels[-1] * self.classifier.out_features | ||||||
|  |     if config_dict is None: | ||||||
|  |       return flop / 1e6 | ||||||
|  |     else: | ||||||
|  |       config_dict['xchannels']  = channels | ||||||
|  |       config_dict['super_type'] = 'infer-width' | ||||||
|  |       config_dict['estimated_FLOP'] = flop / 1e6 | ||||||
|  |       return flop / 1e6, config_dict | ||||||
|  |  | ||||||
|  |   def get_arch_info(self): | ||||||
|  |     string = "for width, there are {:} attention probabilities.".format(len(self.width_attentions)) | ||||||
|  |     discrepancy = [] | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       for i, att in enumerate(self.width_attentions): | ||||||
|  |         prob = nn.functional.softmax(att, dim=0) | ||||||
|  |         prob = prob.cpu() ; selc = prob.argmax().item() ; prob = prob.tolist() | ||||||
|  |         prob = ['{:.3f}'.format(x) for x in prob] | ||||||
|  |         xstring = '{:03d}/{:03d}-th : {:}'.format(i, len(self.width_attentions), ' '.join(prob)) | ||||||
|  |         logt = ['{:.3f}'.format(x) for x in att.cpu().tolist()] | ||||||
|  |         xstring += '  ||  {:52s}'.format(' '.join(logt)) | ||||||
|  |         prob = sorted( [float(x) for x in prob] ) | ||||||
|  |         disc = prob[-1] - prob[-2] | ||||||
|  |         xstring += '  || dis={:.2f} || select={:}/{:}'.format(disc, selc, len(prob)) | ||||||
|  |         discrepancy.append( disc ) | ||||||
|  |         string += '\n{:}'.format(xstring) | ||||||
|  |     return string, discrepancy | ||||||
|  |  | ||||||
|  |   def set_tau(self, tau_max, tau_min, epoch_ratio): | ||||||
|  |     assert epoch_ratio >= 0 and epoch_ratio <= 1, 'invalid epoch-ratio : {:}'.format(epoch_ratio) | ||||||
|  |     tau = tau_min + (tau_max-tau_min) * (1 + math.cos(math.pi * epoch_ratio)) / 2 | ||||||
|  |     self.tau = tau | ||||||
|  |  | ||||||
|  |   def get_message(self): | ||||||
|  |     return self.message | ||||||
|  |  | ||||||
|  |   def forward(self, inputs): | ||||||
|  |     if self.search_mode == 'basic': | ||||||
|  |       return self.basic_forward(inputs) | ||||||
|  |     elif self.search_mode == 'search': | ||||||
|  |       return self.search_forward(inputs) | ||||||
|  |     else: | ||||||
|  |       raise ValueError('invalid search_mode = {:}'.format(self.search_mode)) | ||||||
|  |  | ||||||
|  |   def search_forward(self, inputs): | ||||||
|  |     flop_probs = nn.functional.softmax(self.width_attentions, dim=1) | ||||||
|  |     selected_widths, selected_probs = select2withP(self.width_attentions, self.tau) | ||||||
|  |     with torch.no_grad(): | ||||||
|  |       selected_widths = selected_widths.cpu() | ||||||
|  |  | ||||||
|  |     x, last_channel_idx, expected_inC, flops = inputs, 0, 3, [] | ||||||
|  |     for i, layer in enumerate(self.layers): | ||||||
|  |       selected_w_index = selected_widths[last_channel_idx: last_channel_idx+layer.num_conv] | ||||||
|  |       selected_w_probs = selected_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||||
|  |       layer_prob       = flop_probs[last_channel_idx: last_channel_idx+layer.num_conv] | ||||||
|  |       x, expected_inC, expected_flop = layer( (x, expected_inC, layer_prob, selected_w_index, selected_w_probs) ) | ||||||
|  |       last_channel_idx += layer.num_conv | ||||||
|  |       flops.append( expected_flop ) | ||||||
|  |     flops.append( expected_inC * (self.classifier.out_features*1.0/1e6) ) | ||||||
|  |     features = self.avgpool(x) | ||||||
|  |     features = features.view(features.size(0), -1) | ||||||
|  |     logits   = linear_forward(features, self.classifier) | ||||||
|  |     return logits, torch.stack( [sum(flops)] ) | ||||||
|  |  | ||||||
|  |   def basic_forward(self, inputs): | ||||||
|  |     if self.InShape is None: self.InShape = (inputs.size(-2), inputs.size(-1)) | ||||||
|  |     x = inputs | ||||||
|  |     for i, layer in enumerate(self.layers): | ||||||
|  |       x = layer( x ) | ||||||
|  |     features = self.avgpool(x) | ||||||
|  |     features = features.view(features.size(0), -1) | ||||||
|  |     logits   = self.classifier(features) | ||||||
|  |     return features, logits | ||||||
| @@ -4,4 +4,5 @@ | |||||||
| from .SearchCifarResNet_width import SearchWidthCifarResNet | from .SearchCifarResNet_width import SearchWidthCifarResNet | ||||||
| from .SearchCifarResNet_depth import SearchDepthCifarResNet | from .SearchCifarResNet_depth import SearchDepthCifarResNet | ||||||
| from .SearchCifarResNet       import SearchShapeCifarResNet | from .SearchCifarResNet       import SearchShapeCifarResNet | ||||||
|  | from .SearchSimResNet_width   import SearchWidthSimResNet | ||||||
| from .SearchImagenetResNet    import SearchShapeImagenetResNet | from .SearchImagenetResNet    import SearchShapeImagenetResNet | ||||||
|   | |||||||
							
								
								
									
										32
									
								
								lib/tf_models/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										32
									
								
								lib/tf_models/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,32 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
|  | ################################################## | ||||||
|  | import torch | ||||||
|  | from os import path as osp | ||||||
|  |  | ||||||
|  | __all__ = ['get_cell_based_tiny_net', 'get_search_spaces'] | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # the cell-based NAS models | ||||||
|  | def get_cell_based_tiny_net(config): | ||||||
|  |   group_names = ['GDAS'] | ||||||
|  |   if config.name in group_names: | ||||||
|  |     from .cell_searchs import nas_super_nets | ||||||
|  |     from .cell_operations import SearchSpaceNames | ||||||
|  |     if isinstance(config.space, str): search_space = SearchSpaceNames[config.space] | ||||||
|  |     else: search_space = config.space | ||||||
|  |     return nas_super_nets[config.name]( | ||||||
|  |                   config.C, config.N, config.max_nodes, | ||||||
|  |                   config.num_classes, search_space, config.affine) | ||||||
|  |   else: | ||||||
|  |     raise ValueError('invalid network name : {:}'.format(config.name)) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | # obtain the search space, i.e., a dict mapping the operation name into a python-function for this op | ||||||
|  | def get_search_spaces(xtype, name): | ||||||
|  |   if xtype == 'cell': | ||||||
|  |     from .cell_operations import SearchSpaceNames | ||||||
|  |     assert name in SearchSpaceNames, 'invalid name [{:}] in {:}'.format(name, SearchSpaceNames.keys()) | ||||||
|  |     return SearchSpaceNames[name] | ||||||
|  |   else: | ||||||
|  |     raise ValueError('invalid search-space type is {:}'.format(xtype)) | ||||||
							
								
								
									
										120
									
								
								lib/tf_models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										120
									
								
								lib/tf_models/cell_operations.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,120 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
|  | ################################################## | ||||||
|  | import tensorflow as tf | ||||||
|  |  | ||||||
|  | __all__ = ['OPS', 'ResNetBasicblock', 'SearchSpaceNames'] | ||||||
|  |  | ||||||
|  | OPS = { | ||||||
|  |   'none'        : lambda C_in, C_out, stride, affine: Zero(C_in, C_out, stride), | ||||||
|  |   'avg_pool_3x3': lambda C_in, C_out, stride, affine: POOLING(C_in, C_out, stride, 'avg', affine), | ||||||
|  |   'nor_conv_1x1': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 1, stride, affine), | ||||||
|  |   'nor_conv_3x3': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 3, stride, affine), | ||||||
|  |   'nor_conv_5x5': lambda C_in, C_out, stride, affine: ReLUConvBN(C_in, C_out, 5, stride, affine), | ||||||
|  |   'skip_connect': lambda C_in, C_out, stride, affine: Identity(C_in, C_out, stride) | ||||||
|  | } | ||||||
|  |  | ||||||
|  | NAS_BENCH_102         = ['none', 'skip_connect', 'nor_conv_1x1', 'nor_conv_3x3', 'avg_pool_3x3'] | ||||||
|  |  | ||||||
|  | SearchSpaceNames = { | ||||||
|  |                     'nas-bench-102': NAS_BENCH_102, | ||||||
|  |                    } | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class POOLING(tf.keras.layers.Layer): | ||||||
|  |  | ||||||
|  |   def __init__(self, C_in, C_out, stride, mode, affine): | ||||||
|  |     super(POOLING, self).__init__() | ||||||
|  |     if C_in == C_out: | ||||||
|  |       self.preprocess = None | ||||||
|  |     else: | ||||||
|  |       self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, affine) | ||||||
|  |     if mode == 'avg'  : self.op = tf.keras.layers.AvgPool2D((3,3), strides=stride, padding='same') | ||||||
|  |     elif mode == 'max': self.op = tf.keras.layers.MaxPool2D((3,3), strides=stride, padding='same') | ||||||
|  |     else              : raise ValueError('Invalid mode={:} in POOLING'.format(mode)) | ||||||
|  |  | ||||||
|  |   def call(self, inputs, training): | ||||||
|  |     if self.preprocess: x = self.preprocess(inputs) | ||||||
|  |     else              : x = inputs | ||||||
|  |     return self.op(x) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class Identity(tf.keras.layers.Layer): | ||||||
|  |   def __init__(self, C_in, C_out, stride): | ||||||
|  |     super(Identity, self).__init__() | ||||||
|  |     if C_in != C_out or stride != 1: | ||||||
|  |       self.layer = tf.keras.layers.Conv2D(C_out, 3, stride, padding='same', use_bias=False) | ||||||
|  |     else: | ||||||
|  |       self.layer = None | ||||||
|  |    | ||||||
|  |   def call(self, inputs, training): | ||||||
|  |     x = inputs | ||||||
|  |     if self.layer is not None: | ||||||
|  |       x = self.layer(x) | ||||||
|  |     return x | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class Zero(tf.keras.layers.Layer): | ||||||
|  |   def __init__(self, C_in, C_out, stride): | ||||||
|  |     super(Zero, self).__init__() | ||||||
|  |     if C_in != C_out: | ||||||
|  |       self.layer = tf.keras.layers.Conv2D(C_out, 1, stride, padding='same', use_bias=False) | ||||||
|  |     elif stride != 1: | ||||||
|  |       self.layer = tf.keras.layers.AvgPool2D((stride,stride), None, padding="same") | ||||||
|  |     else: | ||||||
|  |       self.layer = None | ||||||
|  |    | ||||||
|  |   def call(self, inputs, training): | ||||||
|  |     x = tf.zeros_like(inputs) | ||||||
|  |     if self.layer is not None: | ||||||
|  |       x = self.layer(x) | ||||||
|  |     return x | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class ReLUConvBN(tf.keras.layers.Layer): | ||||||
|  |   def __init__(self, C_in, C_out, kernel_size, strides, affine): | ||||||
|  |     super(ReLUConvBN, self).__init__() | ||||||
|  |     self.C_in = C_in | ||||||
|  |     self.relu = tf.keras.activations.relu | ||||||
|  |     self.conv = tf.keras.layers.Conv2D(C_out, kernel_size, strides, padding='same', use_bias=False) | ||||||
|  |     self.bn   = tf.keras.layers.BatchNormalization(center=affine, scale=affine) | ||||||
|  |    | ||||||
|  |   def call(self, inputs, training): | ||||||
|  |     x = self.relu(inputs) | ||||||
|  |     x = self.conv(x) | ||||||
|  |     x = self.bn(x, training) | ||||||
|  |     return x | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class ResNetBasicblock(tf.keras.layers.Layer): | ||||||
|  |  | ||||||
|  |   def __init__(self, inplanes, planes, stride, affine=True): | ||||||
|  |     super(ResNetBasicblock, self).__init__() | ||||||
|  |     assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) | ||||||
|  |     self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, affine) | ||||||
|  |     self.conv_b = ReLUConvBN(  planes, planes, 3,      1, affine) | ||||||
|  |     if stride == 2: | ||||||
|  |       self.downsample = tf.keras.Sequential([ | ||||||
|  |                                 tf.keras.layers.AvgPool2D((stride,stride), None, padding="same"), | ||||||
|  |                                 tf.keras.layers.Conv2D(planes, 1, 1, padding='same', use_bias=False)]) | ||||||
|  |     elif inplanes != planes: | ||||||
|  |       self.downsample = ReLUConvBN(inplanes, planes, 1, stride, affine) | ||||||
|  |     else: | ||||||
|  |       self.downsample = None | ||||||
|  |     self.addition = tf.keras.layers.Add() | ||||||
|  |     self.in_dim  = inplanes | ||||||
|  |     self.out_dim = planes | ||||||
|  |     self.stride  = stride | ||||||
|  |     self.num_conv = 2 | ||||||
|  |  | ||||||
|  |   def call(self, inputs, training): | ||||||
|  |  | ||||||
|  |     basicblock = self.conv_a(inputs, training) | ||||||
|  |     basicblock = self.conv_b(basicblock, training) | ||||||
|  |  | ||||||
|  |     if self.downsample is not None: | ||||||
|  |       residual = self.downsample(inputs) | ||||||
|  |     else: | ||||||
|  |       residual = inputs | ||||||
|  |     return self.addition([residual, basicblock]) | ||||||
							
								
								
									
										6
									
								
								lib/tf_models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										6
									
								
								lib/tf_models/cell_searchs/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,6 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
|  | ################################################## | ||||||
|  | from .search_model_gdas     import TinyNetworkGDAS | ||||||
|  |  | ||||||
|  | nas_super_nets = {'GDAS': TinyNetworkGDAS} | ||||||
							
								
								
									
										50
									
								
								lib/tf_models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										50
									
								
								lib/tf_models/cell_searchs/search_cells.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,50 @@ | |||||||
|  | ################################################## | ||||||
|  | # Copyright (c) Xuanyi Dong [GitHub D-X-Y], 2019 # | ||||||
|  | ################################################## | ||||||
|  | import math, random | ||||||
|  | import tensorflow as tf | ||||||
|  | from copy import deepcopy | ||||||
|  | from ..cell_operations import OPS | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SearchCell(tf.keras.layers.Layer): | ||||||
|  |  | ||||||
|  |   def __init__(self, C_in, C_out, stride, max_nodes, op_names, affine=False): | ||||||
|  |     super(SearchCell, self).__init__() | ||||||
|  |  | ||||||
|  |     self.op_names  = deepcopy(op_names) | ||||||
|  |     self.max_nodes = max_nodes | ||||||
|  |     self.in_dim    = C_in | ||||||
|  |     self.out_dim   = C_out | ||||||
|  |     self.edge_keys = [] | ||||||
|  |     for i in range(1, max_nodes): | ||||||
|  |       for j in range(i): | ||||||
|  |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |         if j == 0: | ||||||
|  |           xlists = [OPS[op_name](C_in , C_out, stride, affine) for op_name in op_names] | ||||||
|  |         else: | ||||||
|  |           xlists = [OPS[op_name](C_in , C_out,      1, affine) for op_name in op_names] | ||||||
|  |         for k, op in enumerate(xlists): | ||||||
|  |           setattr(self, '{:}.{:}'.format(node_str, k), op) | ||||||
|  |         self.edge_keys.append( node_str ) | ||||||
|  |     self.edge_keys  = sorted(self.edge_keys) | ||||||
|  |     self.edge2index = {key:i for i, key in enumerate(self.edge_keys)} | ||||||
|  |     self.num_edges  = len(self.edge_keys) | ||||||
|  |  | ||||||
|  |   def call(self, inputs, weightss, training): | ||||||
|  |     w_lst = tf.split(weightss, self.num_edges, 0) | ||||||
|  |     nodes = [inputs] | ||||||
|  |     for i in range(1, self.max_nodes): | ||||||
|  |       inter_nodes = [] | ||||||
|  |       for j in range(i): | ||||||
|  |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |         edge_idx = self.edge2index[node_str] | ||||||
|  |         op_outps = [] | ||||||
|  |         for k, op_name in enumerate(self.op_names): | ||||||
|  |           op = getattr(self, '{:}.{:}'.format(node_str, k)) | ||||||
|  |           op_outps.append( op(nodes[j], training) ) | ||||||
|  |         stack_op_outs = tf.stack(op_outps, axis=-1) | ||||||
|  |         weighted_sums = tf.math.multiply(stack_op_outs, w_lst[edge_idx]) | ||||||
|  |         inter_nodes.append( tf.math.reduce_sum(weighted_sums, axis=-1) ) | ||||||
|  |       nodes.append( tf.math.add_n(inter_nodes) ) | ||||||
|  |     return nodes[-1] | ||||||
							
								
								
									
										99
									
								
								lib/tf_models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										99
									
								
								lib/tf_models/cell_searchs/search_model_gdas.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,99 @@ | |||||||
|  | ########################################################################### | ||||||
|  | # Searching for A Robust Neural Architecture in Four GPU Hours, CVPR 2019 # | ||||||
|  | ########################################################################### | ||||||
|  | import tensorflow as tf | ||||||
|  | import numpy as np | ||||||
|  | from copy import deepcopy | ||||||
|  | from ..cell_operations import ResNetBasicblock | ||||||
|  | from .search_cells     import SearchCell | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def sample_gumbel(shape, eps=1e-20): | ||||||
|  |   U = tf.random.uniform(shape, minval=0, maxval=1) | ||||||
|  |   return -tf.math.log(-tf.math.log(U + eps) + eps) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def gumbel_softmax(logits, temperature): | ||||||
|  |   gumbel_softmax_sample = logits + sample_gumbel(tf.shape(logits)) | ||||||
|  |   y = tf.nn.softmax(gumbel_softmax_sample / temperature) | ||||||
|  |   return y | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class TinyNetworkGDAS(tf.keras.Model): | ||||||
|  |  | ||||||
|  |   def __init__(self, C, N, max_nodes, num_classes, search_space, affine): | ||||||
|  |     super(TinyNetworkGDAS, self).__init__() | ||||||
|  |     self._C        = C | ||||||
|  |     self._layerN   = N | ||||||
|  |     self.max_nodes = max_nodes | ||||||
|  |     self.stem = tf.keras.Sequential([ | ||||||
|  |                     tf.keras.layers.Conv2D(16, 3, 1, padding='same', use_bias=False), | ||||||
|  |                     tf.keras.layers.BatchNormalization()], name='stem') | ||||||
|  |    | ||||||
|  |     layer_channels   = [C    ] * N + [C*2 ] + [C*2  ] * N + [C*4 ] + [C*4  ] * N     | ||||||
|  |     layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N | ||||||
|  |  | ||||||
|  |     C_prev, num_edge, edge2index = C, None, None | ||||||
|  |     for index, (C_curr, reduction) in enumerate(zip(layer_channels, layer_reductions)): | ||||||
|  |       cell_prefix = 'cell-{:03d}'.format(index) | ||||||
|  |       #with tf.name_scope(cell_prefix) as scope: | ||||||
|  |       if reduction: | ||||||
|  |         cell = ResNetBasicblock(C_prev, C_curr, 2) | ||||||
|  |       else: | ||||||
|  |         cell = SearchCell(C_prev, C_curr, 1, max_nodes, search_space, affine) | ||||||
|  |         if num_edge is None: num_edge, edge2index = cell.num_edges, cell.edge2index | ||||||
|  |         else: assert num_edge == cell.num_edges and edge2index == cell.edge2index, 'invalid {:} vs. {:}.'.format(num_edge, cell.num_edges) | ||||||
|  |       C_prev = cell.out_dim | ||||||
|  |       setattr(self, cell_prefix, cell) | ||||||
|  |     self.num_layers = len(layer_reductions) | ||||||
|  |     self.op_names   = deepcopy( search_space ) | ||||||
|  |     self.edge2index = edge2index | ||||||
|  |     self.num_edge   = num_edge | ||||||
|  |     self.lastact    = tf.keras.Sequential([ | ||||||
|  |                         tf.keras.layers.BatchNormalization(), | ||||||
|  |                         tf.keras.layers.ReLU(), | ||||||
|  |                         tf.keras.layers.GlobalAvgPool2D(), | ||||||
|  |                         tf.keras.layers.Flatten(), | ||||||
|  |                         tf.keras.layers.Dense(num_classes, activation='softmax')], name='lastact') | ||||||
|  |     #self.arch_parameters = nn.Parameter( 1e-3*torch.randn(num_edge, len(search_space)) ) | ||||||
|  |     arch_init = tf.random_normal_initializer(mean=0, stddev=0.001) | ||||||
|  |     self.arch_parameters = tf.Variable(initial_value=arch_init(shape=(num_edge, len(search_space)), dtype='float32'), trainable=True, name='arch-encoding') | ||||||
|  |  | ||||||
|  |   def get_alphas(self): | ||||||
|  |     xlist = self.trainable_variables | ||||||
|  |     return [x for x in xlist if 'arch-encoding' in x.name] | ||||||
|  |  | ||||||
|  |   def get_weights(self): | ||||||
|  |     xlist = self.trainable_variables | ||||||
|  |     return [x for x in xlist if 'arch-encoding' not in x.name] | ||||||
|  |  | ||||||
|  |   def get_np_alphas(self): | ||||||
|  |     arch_nps = self.arch_parameters.numpy() | ||||||
|  |     arch_ops = np.exp(arch_nps) / np.sum(np.exp(arch_nps), axis=-1, keepdims=True) | ||||||
|  |     return arch_ops | ||||||
|  |  | ||||||
|  |   def genotype(self): | ||||||
|  |     genotypes, arch_nps = [], self.arch_parameters.numpy() | ||||||
|  |     for i in range(1, self.max_nodes): | ||||||
|  |       xlist = [] | ||||||
|  |       for j in range(i): | ||||||
|  |         node_str = '{:}<-{:}'.format(i, j) | ||||||
|  |         weights = arch_nps[ self.edge2index[node_str] ] | ||||||
|  |         op_name = self.op_names[ weights.argmax().item() ] | ||||||
|  |         xlist.append((op_name, j)) | ||||||
|  |       genotypes.append( tuple(xlist) ) | ||||||
|  |     return genotypes | ||||||
|  |  | ||||||
|  |   #  | ||||||
|  |   def call(self, inputs, tau, training): | ||||||
|  |     weightss = tf.cond(tau < 0, lambda: tf.nn.softmax(self.arch_parameters, axis=1), | ||||||
|  |                                 lambda: gumbel_softmax(tf.math.log_softmax(self.arch_parameters, axis=1), tau)) | ||||||
|  |     feature = self.stem(inputs, training) | ||||||
|  |     for idx in range(self.num_layers): | ||||||
|  |       cell = getattr(self, 'cell-{:03d}'.format(idx)) | ||||||
|  |       if isinstance(cell, SearchCell): | ||||||
|  |         feature = cell.call(feature, weightss, training) | ||||||
|  |       else: | ||||||
|  |         feature = cell(feature, training) | ||||||
|  |     logits = self.lastact(feature, training) | ||||||
|  |     return logits | ||||||
							
								
								
									
										1
									
								
								lib/tf_optimizers/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								lib/tf_optimizers/__init__.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | |||||||
|  | from .weight_decay_optimizers import AdamW, SGDW | ||||||
							
								
								
									
										422
									
								
								lib/tf_optimizers/weight_decay_optimizers.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										422
									
								
								lib/tf_optimizers/weight_decay_optimizers.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,422 @@ | |||||||
|  | # Copyright 2019 The TensorFlow Authors. All Rights Reserved. | ||||||
|  | # | ||||||
|  | # Licensed under the Apache License, Version 2.0 (the "License"); | ||||||
|  | # you may not use this file except in compliance with the License. | ||||||
|  | # You may obtain a copy of the License at | ||||||
|  | # | ||||||
|  | #     http://www.apache.org/licenses/LICENSE-2.0 | ||||||
|  | # | ||||||
|  | # Unless required by applicable law or agreed to in writing, software | ||||||
|  | # distributed under the License is distributed on an "AS IS" BASIS, | ||||||
|  | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||||||
|  | # See the License for the specific language governing permissions and | ||||||
|  | # limitations under the License. | ||||||
|  | # ============================================================================== | ||||||
|  | """Base class to make optimizers weight decay ready.""" | ||||||
|  | from __future__ import absolute_import | ||||||
|  | from __future__ import division | ||||||
|  | from __future__ import print_function | ||||||
|  |  | ||||||
|  | import tensorflow as tf | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class DecoupledWeightDecayExtension(object): | ||||||
|  |     """This class allows to extend optimizers with decoupled weight decay. | ||||||
|  |  | ||||||
|  |     It implements the decoupled weight decay described by Loshchilov & Hutter | ||||||
|  |     (https://arxiv.org/pdf/1711.05101.pdf), in which the weight decay is | ||||||
|  |     decoupled from the optimization steps w.r.t. to the loss function. | ||||||
|  |     For SGD variants, this simplifies hyperparameter search since it decouples | ||||||
|  |     the settings of weight decay and learning rate. | ||||||
|  |     For adaptive gradient algorithms, it regularizes variables with large | ||||||
|  |     gradients more than L2 regularization would, which was shown to yield | ||||||
|  |     better training loss and generalization error in the paper above. | ||||||
|  |  | ||||||
|  |     This class alone is not an optimizer but rather extends existing | ||||||
|  |     optimizers with decoupled weight decay. We explicitly define the two | ||||||
|  |     examples used in the above paper (SGDW and AdamW), but in general this | ||||||
|  |     can extend any OptimizerX by using | ||||||
|  |     `extend_with_decoupled_weight_decay( | ||||||
|  |         OptimizerX, weight_decay=weight_decay)`. | ||||||
|  |     In order for it to work, it must be the first class the Optimizer with | ||||||
|  |     weight decay inherits from, e.g. | ||||||
|  |  | ||||||
|  |     ```python | ||||||
|  |     class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam): | ||||||
|  |       def __init__(self, weight_decay, *args, **kwargs): | ||||||
|  |         super(AdamW, self).__init__(weight_decay, *args, **kwargs). | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  |     Note: this extension decays weights BEFORE applying the update based | ||||||
|  |     on the gradient, i.e. this extension only has the desired behaviour for | ||||||
|  |     optimizers which do not depend on the value of'var' in the update step! | ||||||
|  |  | ||||||
|  |     Note: when applying a decay to the learning rate, be sure to manually apply | ||||||
|  |     the decay to the `weight_decay` as well. For example: | ||||||
|  |  | ||||||
|  |     ```python | ||||||
|  |     step = tf.Variable(0, trainable=False) | ||||||
|  |     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||||
|  |         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||||
|  |     # lr and wd can be a function or a tensor | ||||||
|  |     lr = 1e-1 * schedule(step) | ||||||
|  |     wd = lambda: 1e-4 * schedule(step) | ||||||
|  |  | ||||||
|  |     # ... | ||||||
|  |  | ||||||
|  |     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) | ||||||
|  |     ``` | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     def __init__(self, weight_decay, **kwargs): | ||||||
|  |         """Extension class that adds weight decay to an optimizer. | ||||||
|  |  | ||||||
|  |         Args: | ||||||
|  |             weight_decay: A `Tensor` or a floating point value, the factor by | ||||||
|  |                 which a variable is decayed in the update step. | ||||||
|  |             **kwargs: Optional list or tuple or set of `Variable` objects to | ||||||
|  |                 decay. | ||||||
|  |         """ | ||||||
|  |         wd = kwargs.pop('weight_decay', weight_decay) | ||||||
|  |         super(DecoupledWeightDecayExtension, self).__init__(**kwargs) | ||||||
|  |         self._decay_var_list = None  # is set in minimize or apply_gradients | ||||||
|  |         self._set_hyper('weight_decay', wd) | ||||||
|  |  | ||||||
|  |     def get_config(self): | ||||||
|  |         config = super(DecoupledWeightDecayExtension, self).get_config() | ||||||
|  |         config.update({ | ||||||
|  |             'weight_decay': | ||||||
|  |             self._serialize_hyperparameter('weight_decay'), | ||||||
|  |         }) | ||||||
|  |         return config | ||||||
|  |  | ||||||
|  |     def minimize(self, | ||||||
|  |                  loss, | ||||||
|  |                  var_list, | ||||||
|  |                  grad_loss=None, | ||||||
|  |                  name=None, | ||||||
|  |                  decay_var_list=None): | ||||||
|  |         """Minimize `loss` by updating `var_list`. | ||||||
|  |  | ||||||
|  |         This method simply computes gradient using `tf.GradientTape` and calls | ||||||
|  |         `apply_gradients()`. If you want to process the gradient before | ||||||
|  |         applying then call `tf.GradientTape` and `apply_gradients()` explicitly | ||||||
|  |         instead of using this function. | ||||||
|  |  | ||||||
|  |         Args: | ||||||
|  |             loss: A callable taking no arguments which returns the value to | ||||||
|  |                 minimize. | ||||||
|  |             var_list: list or tuple of `Variable` objects to update to | ||||||
|  |                 minimize `loss`, or a callable returning the list or tuple of | ||||||
|  |                 `Variable` objects. Use callable when the variable list would | ||||||
|  |                 otherwise be incomplete before `minimize` since the variables | ||||||
|  |                 are created at the first time `loss` is called. | ||||||
|  |             grad_loss: Optional. A `Tensor` holding the gradient computed for | ||||||
|  |                 `loss`. | ||||||
|  |             decay_var_list: Optional list of variables to be decayed. Defaults | ||||||
|  |                 to all variables in var_list. | ||||||
|  |             name: Optional name for the returned operation. | ||||||
|  |         Returns: | ||||||
|  |             An Operation that updates the variables in `var_list`.  If | ||||||
|  |             `global_step` was not `None`, that operation also increments | ||||||
|  |             `global_step`. | ||||||
|  |         Raises: | ||||||
|  |             ValueError: If some of the variables are not `Variable` objects. | ||||||
|  |         """ | ||||||
|  |         self._decay_var_list = set(decay_var_list) if decay_var_list else False | ||||||
|  |         return super(DecoupledWeightDecayExtension, self).minimize( | ||||||
|  |             loss, var_list=var_list, grad_loss=grad_loss, name=name) | ||||||
|  |  | ||||||
|  |     def apply_gradients(self, grads_and_vars, name=None, decay_var_list=None): | ||||||
|  |         """Apply gradients to variables. | ||||||
|  |  | ||||||
|  |         This is the second part of `minimize()`. It returns an `Operation` that | ||||||
|  |         applies gradients. | ||||||
|  |  | ||||||
|  |         Args: | ||||||
|  |             grads_and_vars: List of (gradient, variable) pairs. | ||||||
|  |             name: Optional name for the returned operation.  Default to the | ||||||
|  |                 name passed to the `Optimizer` constructor. | ||||||
|  |             decay_var_list: Optional list of variables to be decayed. Defaults | ||||||
|  |                 to all variables in var_list. | ||||||
|  |         Returns: | ||||||
|  |             An `Operation` that applies the specified gradients. If | ||||||
|  |             `global_step` was not None, that operation also increments | ||||||
|  |             `global_step`. | ||||||
|  |         Raises: | ||||||
|  |             TypeError: If `grads_and_vars` is malformed. | ||||||
|  |             ValueError: If none of the variables have gradients. | ||||||
|  |         """ | ||||||
|  |         self._decay_var_list = set(decay_var_list) if decay_var_list else False | ||||||
|  |         return super(DecoupledWeightDecayExtension, self).apply_gradients( | ||||||
|  |             grads_and_vars, name=name) | ||||||
|  |  | ||||||
|  |     def _decay_weights_op(self, var): | ||||||
|  |         if not self._decay_var_list or var in self._decay_var_list: | ||||||
|  |             return var.assign_sub( | ||||||
|  |                 self._get_hyper('weight_decay', var.dtype) * var, | ||||||
|  |                 self._use_locking) | ||||||
|  |         return tf.no_op() | ||||||
|  |  | ||||||
|  |     def _decay_weights_sparse_op(self, var, indices): | ||||||
|  |         if not self._decay_var_list or var in self._decay_var_list: | ||||||
|  |             update = (-self._get_hyper('weight_decay', var.dtype) * tf.gather( | ||||||
|  |                 var, indices)) | ||||||
|  |             return self._resource_scatter_add(var, indices, update) | ||||||
|  |         return tf.no_op() | ||||||
|  |  | ||||||
|  |     # Here, we overwrite the apply functions that the base optimizer calls. | ||||||
|  |     # super().apply_x resolves to the apply_x function of the BaseOptimizer. | ||||||
|  |  | ||||||
|  |     def _resource_apply_dense(self, grad, var): | ||||||
|  |         with tf.control_dependencies([self._decay_weights_op(var)]): | ||||||
|  |             return super(DecoupledWeightDecayExtension, | ||||||
|  |                          self)._resource_apply_dense(grad, var) | ||||||
|  |  | ||||||
|  |     def _resource_apply_sparse(self, grad, var, indices): | ||||||
|  |         decay_op = self._decay_weights_sparse_op(var, indices) | ||||||
|  |         with tf.control_dependencies([decay_op]): | ||||||
|  |             return super(DecoupledWeightDecayExtension, | ||||||
|  |                          self)._resource_apply_sparse(grad, var, indices) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | def extend_with_decoupled_weight_decay(base_optimizer): | ||||||
|  |     """Factory function returning an optimizer class with decoupled weight | ||||||
|  |     decay. | ||||||
|  |  | ||||||
|  |     Returns an optimizer class. An instance of the returned class computes the | ||||||
|  |     update step of `base_optimizer` and additionally decays the weights. | ||||||
|  |     E.g., the class returned by | ||||||
|  |     `extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam)` is | ||||||
|  |     equivalent to `tfa.optimizers.AdamW`. | ||||||
|  |  | ||||||
|  |     The API of the new optimizer class slightly differs from the API of the | ||||||
|  |     base optimizer: | ||||||
|  |     - The first argument to the constructor is the weight decay rate. | ||||||
|  |     - `minimize` and `apply_gradients` accept the optional keyword argument | ||||||
|  |       `decay_var_list`, which specifies the variables that should be decayed. | ||||||
|  |       If `None`, all variables that are optimized are decayed. | ||||||
|  |  | ||||||
|  |     Usage example: | ||||||
|  |     ```python | ||||||
|  |     # MyAdamW is a new class | ||||||
|  |     MyAdamW = extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam) | ||||||
|  |     # Create a MyAdamW object | ||||||
|  |     optimizer = MyAdamW(weight_decay=0.001, learning_rate=0.001) | ||||||
|  |     # update var1, var2 but only decay var1 | ||||||
|  |     optimizer.minimize(loss, var_list=[var1, var2], decay_variables=[var1]) | ||||||
|  |  | ||||||
|  |     Note: this extension decays weights BEFORE applying the update based | ||||||
|  |     on the gradient, i.e. this extension only has the desired behaviour for | ||||||
|  |     optimizers which do not depend on the value of 'var' in the update step! | ||||||
|  |  | ||||||
|  |     Note: when applying a decay to the learning rate, be sure to manually apply | ||||||
|  |     the decay to the `weight_decay` as well. For example: | ||||||
|  |  | ||||||
|  |     ```python | ||||||
|  |     step = tf.Variable(0, trainable=False) | ||||||
|  |     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||||
|  |         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||||
|  |     # lr and wd can be a function or a tensor | ||||||
|  |     lr = 1e-1 * schedule(step) | ||||||
|  |     wd = lambda: 1e-4 * schedule(step) | ||||||
|  |  | ||||||
|  |     # ... | ||||||
|  |  | ||||||
|  |     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  |     Note: you might want to register your own custom optimizer using | ||||||
|  |     `tf.keras.utils.get_custom_objects()`. | ||||||
|  |  | ||||||
|  |     Args: | ||||||
|  |         base_optimizer: An optimizer class that inherits from | ||||||
|  |             tf.optimizers.Optimizer. | ||||||
|  |  | ||||||
|  |     Returns: | ||||||
|  |         A new optimizer class that inherits from DecoupledWeightDecayExtension | ||||||
|  |         and base_optimizer. | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     class OptimizerWithDecoupledWeightDecay(DecoupledWeightDecayExtension, | ||||||
|  |                                             base_optimizer): | ||||||
|  |         """Base_optimizer with decoupled weight decay. | ||||||
|  |  | ||||||
|  |         This class computes the update step of `base_optimizer` and | ||||||
|  |         additionally decays the variable with the weight decay being | ||||||
|  |         decoupled from the optimization steps w.r.t. to the loss | ||||||
|  |         function, as described by Loshchilov & Hutter | ||||||
|  |         (https://arxiv.org/pdf/1711.05101.pdf). For SGD variants, this | ||||||
|  |         simplifies hyperparameter search since it decouples the settings | ||||||
|  |         of weight decay and learning rate. For adaptive gradient | ||||||
|  |         algorithms, it regularizes variables with large gradients more | ||||||
|  |         than L2 regularization would, which was shown to yield better | ||||||
|  |         training loss and generalization error in the paper above. | ||||||
|  |         """ | ||||||
|  |  | ||||||
|  |         def __init__(self, weight_decay, *args, **kwargs): | ||||||
|  |             # super delegation is necessary here | ||||||
|  |             super(OptimizerWithDecoupledWeightDecay, self).__init__( | ||||||
|  |                 weight_decay, *args, **kwargs) | ||||||
|  |  | ||||||
|  |     return OptimizerWithDecoupledWeightDecay | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class SGDW(DecoupledWeightDecayExtension, tf.keras.optimizers.SGD): | ||||||
|  |     """Optimizer that implements the Momentum algorithm with weight_decay. | ||||||
|  |  | ||||||
|  |     This is an implementation of the SGDW optimizer described in "Decoupled | ||||||
|  |     Weight Decay Regularization" by Loshchilov & Hutter | ||||||
|  |     (https://arxiv.org/abs/1711.05101) | ||||||
|  |     ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). | ||||||
|  |     It computes the update step of `tf.keras.optimizers.SGD` and additionally | ||||||
|  |     decays the variable. Note that this is different from adding | ||||||
|  |     L2 regularization on the variables to the loss. Decoupling the weight decay | ||||||
|  |     from other hyperparameters (in particular the learning rate) simplifies | ||||||
|  |     hyperparameter search. | ||||||
|  |  | ||||||
|  |     For further information see the documentation of the SGD Optimizer. | ||||||
|  |  | ||||||
|  |     This optimizer can also be instantiated as | ||||||
|  |     ```python | ||||||
|  |     extend_with_decoupled_weight_decay(tf.keras.optimizers.SGD, | ||||||
|  |                                        weight_decay=weight_decay) | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  |     Note: when applying a decay to the learning rate, be sure to manually apply | ||||||
|  |     the decay to the `weight_decay` as well. For example: | ||||||
|  |  | ||||||
|  |     ```python | ||||||
|  |     step = tf.Variable(0, trainable=False) | ||||||
|  |     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||||
|  |         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||||
|  |     # lr and wd can be a function or a tensor | ||||||
|  |     lr = 1e-1 * schedule(step) | ||||||
|  |     wd = lambda: 1e-4 * schedule(step) | ||||||
|  |  | ||||||
|  |     # ... | ||||||
|  |  | ||||||
|  |     optimizer = tfa.optimizers.SGDW( | ||||||
|  |         learning_rate=lr, weight_decay=wd, momentum=0.9) | ||||||
|  |     ``` | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     def __init__(self, | ||||||
|  |                  weight_decay, | ||||||
|  |                  learning_rate=0.001, | ||||||
|  |                  momentum=0.0, | ||||||
|  |                  nesterov=False, | ||||||
|  |                  name='SGDW', | ||||||
|  |                  **kwargs): | ||||||
|  |         """Construct a new SGDW optimizer. | ||||||
|  |  | ||||||
|  |         For further information see the documentation of the SGD Optimizer. | ||||||
|  |  | ||||||
|  |         Args: | ||||||
|  |             learning_rate: float hyperparameter >= 0. Learning rate. | ||||||
|  |             momentum: float hyperparameter >= 0 that accelerates SGD in the | ||||||
|  |                 relevant direction and dampens oscillations. | ||||||
|  |             nesterov: boolean. Whether to apply Nesterov momentum. | ||||||
|  |             name: Optional name prefix for the operations created when applying | ||||||
|  |                 gradients.  Defaults to 'SGD'. | ||||||
|  |             **kwargs: keyword arguments. Allowed to be {`clipnorm`, | ||||||
|  |                 `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by | ||||||
|  |                 norm; `clipvalue` is clip gradients by value, `decay` is | ||||||
|  |                 included for backward compatibility to allow time inverse decay | ||||||
|  |                 of learning rate. `lr` is included for backward compatibility, | ||||||
|  |                 recommended to use `learning_rate` instead. | ||||||
|  |         """ | ||||||
|  |         super(SGDW, self).__init__( | ||||||
|  |             weight_decay, | ||||||
|  |             learning_rate=learning_rate, | ||||||
|  |             momentum=momentum, | ||||||
|  |             nesterov=nesterov, | ||||||
|  |             name=name, | ||||||
|  |             **kwargs) | ||||||
|  |  | ||||||
|  |  | ||||||
|  | class AdamW(DecoupledWeightDecayExtension, tf.keras.optimizers.Adam): | ||||||
|  |     """Optimizer that implements the Adam algorithm with weight decay. | ||||||
|  |  | ||||||
|  |     This is an implementation of the AdamW optimizer described in "Decoupled | ||||||
|  |     Weight Decay Regularization" by Loshchilov & Hutter | ||||||
|  |     (https://arxiv.org/abs/1711.05101) | ||||||
|  |     ([pdf])(https://arxiv.org/pdf/1711.05101.pdf). | ||||||
|  |  | ||||||
|  |     It computes the update step of `tf.keras.optimizers.Adam` and additionally | ||||||
|  |     decays the variable. Note that this is different from adding L2 | ||||||
|  |     regularization on the variables to the loss: it regularizes variables with | ||||||
|  |     large gradients more than L2 regularization would, which was shown to yield | ||||||
|  |     better training loss and generalization error in the paper above. | ||||||
|  |  | ||||||
|  |     For further information see the documentation of the Adam Optimizer. | ||||||
|  |  | ||||||
|  |     This optimizer can also be instantiated as | ||||||
|  |     ```python | ||||||
|  |     extend_with_decoupled_weight_decay(tf.keras.optimizers.Adam, | ||||||
|  |                                        weight_decay=weight_decay) | ||||||
|  |     ``` | ||||||
|  |  | ||||||
|  |     Note: when applying a decay to the learning rate, be sure to manually apply | ||||||
|  |     the decay to the `weight_decay` as well. For example: | ||||||
|  |  | ||||||
|  |     ```python | ||||||
|  |     step = tf.Variable(0, trainable=False) | ||||||
|  |     schedule = tf.optimizers.schedules.PiecewiseConstantDecay( | ||||||
|  |         [10000, 15000], [1e-0, 1e-1, 1e-2]) | ||||||
|  |     # lr and wd can be a function or a tensor | ||||||
|  |     lr = 1e-1 * schedule(step) | ||||||
|  |     wd = lambda: 1e-4 * schedule(step) | ||||||
|  |  | ||||||
|  |     # ... | ||||||
|  |  | ||||||
|  |     optimizer = tfa.optimizers.AdamW(learning_rate=lr, weight_decay=wd) | ||||||
|  |     ``` | ||||||
|  |     """ | ||||||
|  |  | ||||||
|  |     def __init__(self, | ||||||
|  |                  weight_decay, | ||||||
|  |                  learning_rate=0.001, | ||||||
|  |                  beta_1=0.9, | ||||||
|  |                  beta_2=0.999, | ||||||
|  |                  epsilon=1e-07, | ||||||
|  |                  amsgrad=False, | ||||||
|  |                  name="AdamW", | ||||||
|  |                  **kwargs): | ||||||
|  |         """Construct a new AdamW optimizer. | ||||||
|  |  | ||||||
|  |         For further information see the documentation of the Adam Optimizer. | ||||||
|  |  | ||||||
|  |         Args: | ||||||
|  |             weight_decay: A Tensor or a floating point value. The weight decay. | ||||||
|  |             learning_rate: A Tensor or a floating point value. The learning | ||||||
|  |                 rate. | ||||||
|  |             beta_1: A float value or a constant float tensor. The exponential | ||||||
|  |                 decay rate for the 1st moment estimates. | ||||||
|  |             beta_2: A float value or a constant float tensor. The exponential | ||||||
|  |                 decay rate for the 2nd moment estimates. | ||||||
|  |             epsilon: A small constant for numerical stability. This epsilon is | ||||||
|  |                 "epsilon hat" in the Kingma and Ba paper (in the formula just | ||||||
|  |                 before Section 2.1), not the epsilon in Algorithm 1 of the | ||||||
|  |                 paper. | ||||||
|  |             amsgrad: boolean. Whether to apply AMSGrad variant of this | ||||||
|  |                 algorithm from the paper "On the Convergence of Adam and | ||||||
|  |                 beyond". | ||||||
|  |             name: Optional name for the operations created when applying | ||||||
|  |                 gradients. Defaults to "AdamW". | ||||||
|  |             **kwargs: keyword arguments. Allowed to be {`clipnorm`, | ||||||
|  |                 `clipvalue`, `lr`, `decay`}. `clipnorm` is clip gradients by | ||||||
|  |                 norm; `clipvalue` is clip gradients by value, `decay` is | ||||||
|  |                 included for backward compatibility to allow time inverse decay | ||||||
|  |                 of learning rate. `lr` is included for backward compatibility, | ||||||
|  |                 recommended to use `learning_rate` instead. | ||||||
|  |         """ | ||||||
|  |         super(AdamW, self).__init__( | ||||||
|  |             weight_decay, | ||||||
|  |             learning_rate=learning_rate, | ||||||
|  |             beta_1=beta_1, | ||||||
|  |             beta_2=beta_2, | ||||||
|  |             epsilon=epsilon, | ||||||
|  |             amsgrad=amsgrad, | ||||||
|  |             name=name, | ||||||
|  |             **kwargs) | ||||||
		Reference in New Issue
	
	Block a user