Update README
This commit is contained in:
parent
dd0722c1b7
commit
5c7ef93471
@ -106,10 +106,10 @@ to download this repo with submodules.
|
||||
If you find that this project helps your research, please consider citing the related paper:
|
||||
```
|
||||
@inproceedings{dong2021autohas,
|
||||
title={{AutoHAS}: Efficient Hyperparameter and Architecture Search},
|
||||
author={Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V},
|
||||
booktitle = {International Conference on Learning Representations (ICLR) Workshop on Neural Architecture Search},
|
||||
year={2021}
|
||||
title = {{AutoHAS}: Efficient Hyperparameter and Architecture Search},
|
||||
author = {Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V},
|
||||
booktitle = {2nd Workshop on Neural Architecture Search at International Conference on Learning Representations (ICLR)},
|
||||
year = {2021}
|
||||
}
|
||||
@article{dong2021nats,
|
||||
title = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size},
|
||||
|
@ -99,10 +99,10 @@ Some methods use knowledge distillation (KD), which require pre-trained models.
|
||||
如果您发现该项目对您的科研或工程有帮助,请考虑引用下列的某些文献:
|
||||
```
|
||||
@inproceedings{dong2021autohas,
|
||||
title={{AutoHAS}: Efficient Hyperparameter and Architecture Search},
|
||||
author={Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V},
|
||||
booktitle = {International Conference on Learning Representations (ICLR) Workshop on Neural Architecture Search},
|
||||
year={2021}
|
||||
title = {{AutoHAS}: Efficient Hyperparameter and Architecture Search},
|
||||
author = {Dong, Xuanyi and Tan, Mingxing and Yu, Adams Wei and Peng, Daiyi and Gabrys, Bogdan and Le, Quoc V},
|
||||
booktitle = {2nd Workshop on Neural Architecture Search at International Conference on Learning Representations (ICLR)},
|
||||
year = {2021}
|
||||
}
|
||||
@article{dong2021nats,
|
||||
title = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size},
|
||||
|
118
notebooks/NATS-Bench/BayesOpt.ipynb
Normal file
118
notebooks/NATS-Bench/BayesOpt.ipynb
Normal file
@ -0,0 +1,118 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
"id": "german-madonna",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Implementation for \"A Tutorial on Bayesian Optimization\"\n",
|
||||
"import numpy as np\n",
|
||||
"\n",
|
||||
"def get_data():\n",
|
||||
" return np.random.random(2) * 10\n",
|
||||
"\n",
|
||||
"def f(x):\n",
|
||||
" return float(np.power((x[0] * 3 - x[1]), 3) - np.exp(x[1]) + np.power(x[0], 2))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 12,
|
||||
"id": "broke-citizenship",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# Kernels typically have the property that points closer in the input space are more strongly correlated\n",
|
||||
"# i.e., if |x1 - x2| < |x1 - x3|, then sigma(x1, x2) > sigma(x1, x3).\n",
|
||||
"# the commonly used and simple kernel is the power exponential or Gaussian kernel:\n",
|
||||
"def sigma0(x1, x2, alpha0=1, alpha=[1,1]):\n",
|
||||
" \"\"\"alpha could be a vector\"\"\"\n",
|
||||
" power = np.array(alpha, dtype=np.float32) * np.power(np.array(x1)-np.array(x2), 2)\n",
|
||||
" return alpha0 * np.exp( -np.sum(power) )\n",
|
||||
"\n",
|
||||
"# the most common choice for the mean function is a constant value\n",
|
||||
"def mu0(x, mu):\n",
|
||||
" return mu"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 13,
|
||||
"id": "aerial-carnival",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"K = 5\n",
|
||||
"X = np.array([get_data() for i in range(K)])\n",
|
||||
"mu = np.mean(X, axis=0)\n",
|
||||
"mu0_over_K = [mu0(x, mu) for x in X]"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
"id": "polished-discussion",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"sigma0_over_KK = []\n",
|
||||
"for i in range(K):\n",
|
||||
" sigma0_over_KK.append(np.array([sigma0(X[i], X[j]) for j in range(K)]))\n",
|
||||
"sigma0_over_KK = np.array(sigma0_over_KK)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
"id": "comic-jesus",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"(20, 20)\n",
|
||||
"1.1038803861344952e-06\n",
|
||||
"1.1038803861344952e-06\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"print(sigma0_over_KK.shape)\n",
|
||||
"print(sigma0_over_KK[1][2])\n",
|
||||
"print(sigma0_over_KK[2][1])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"id": "statistical-wrist",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": []
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.8.8"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 5
|
||||
}
|
Loading…
Reference in New Issue
Block a user